Kerr-Effekt

Der elektrooptische Kerr-Effekt, a​uch Kerr-Effekt (nach John Kerr, d​er ihn 1875 entdeckte[1]) o​der quadratischer elektrooptischer Effekt, i​st ein nichtlinearer Spezialfall d​es allgemeinen elektrooptischen Effekts. Dieser beschreibt d​ie Änderung d​er optischen Eigenschaften e​ines Materials d​urch Anlegen e​ines äußeren elektrischen Feldes; d​er lineare Spezialfall d​es elektrooptischen Effekts i​st der Pockels-Effekt.

Der elektrooptische Kerr-Effekt w​ird z. B. i​n der Kerr-Zelle u​nd in d​er Kerr-Linse angewandt.

Erklärung

Das Anlegen eines elektrischen Feldes der Feldstärke an ein Medium verändert u. a. dessen optische Eigenschaften, da es eine nichtlineare Neuausrichtung bzw. Neuorientierung der Ladungsträger im Material verursacht. Dieser Prozess zieht u. a. eine Veränderung des Brechungsindex des Materials nach sich, die mathematisch durch eine Taylor-Reihe entwickelt werden kann:

Die höheren Ordnungen des nichtlinearen Brechungsindex können mit Hilfe der Kramers-Kronig-Relation aus der frequenzabhängigen Absorption des Mediums ermittelt werden. Der -Term verursacht den elektrischen Kerr-Effekt, wohingegen der optische Kerr-Effekt den Fall beschreibt, bei dem alle Parameter gegenüber dem Parameter vernachlässigbar sind: Das Material zeigt eine Änderung des Brechungsindex von ordentlicher (o) und außerordentlicher (e) Achse proportional zum Quadrat der angelegten elektrischen Feldstärke:

Die Folge ist, d​ass das Material e​ine Doppelbrechung erzeugen kann.

Die „Stärke“ d​es Kerr-Effekts hängt v​on den Materialeigenschaften ab, i​n einigen transparenten Medien, z. B. einigen Kristallen u​nd Flüssigkeiten, i​st er besonders s​tark und d​amit gut z​u beobachten, weiterhin v​on der Ausbreitungsrichtung u​nd Polarisation d​es Lichtes i​m Material s​owie von d​er Richtung u​nd Stärke d​es elektrischen Feldes i​m Verhältnis z​u den Kristallachsen.

In den meisten Fällen ist die durch den Kerr-Effekt verursachte Änderung des Brechungsindex nur sehr klein: in Kristallen in der Größenordnung von 10−4 und in Flüssigkeiten von 10−9. Wenn sich Licht jedoch im Material über eine längere Distanz (sprich: einige tausend Wellenlängen) fortbewegt, kumuliert sich der Effekt, und man kann durch Anlegen des elektrischen Feldes eine Phasenverschiebung von 0 bis erreichen.

Andere Herangehensweise

Der Kerr-Effekt beschreibt die Beeinflussbarkeit des Polarisationszustandes von Licht durch äußere elektrische Felder. Ausgangspunkt bildet ein optisch isotropes Medium (z. B. Flüssigkeiten), in dem sich anisotrop polarisierbare, also längliche Moleküle befinden. Durch Anlegen eines äußeren elektrischen Feldes wird ein Dipolmoment induziert, was zu einer Ausrichtung der meisten dieser länglichen Moleküle führt. Obwohl auf Grund der thermischen Aktivität der Flüssigkeiten (z. B. Wasser) nicht alle Moleküle ausgerichtet werden, reicht die Anzahl der ausgerichteten Moleküle aus, um eine Doppelbrechung zu bewirken.

Dabei erhält das parallel zu polarisierte Licht einen anderen bzw. außerordentlichen Brechungsindex als der ordentliche Brechungsindex .

Die Differenz zwischen beiden beträgt:

mit

  • der Wellenlänge
  • einer Konstanten K.

Literatur

  • P. P. Ho, R. R. Alfano: Optical Kerr effect in liquids. In: Physical Review A. Band 20, Nr. 5, Oktober 1979, S. 2170, doi:10.1103/PhysRevA.20.2170.
  • Otto Ernst Mittelstaedt: Die Bestimmung der Lichtgeschwindigkeit unter Verwendung des elektrooptischen Kerr-Effektes, Bibliographisches Institut, Leipzig 1928, DNB 570598672 (Philosophische Dissertation Universität Leipzig 1928, 34 Seiten).

Einzelnachweise

  1. John Kerr: A new relation between electricity and light: Dielectrified media birefringent. In: Philosophical Magazine. Band 50, Nr. 332, November 1875, S. 337–348, doi:10.1080/14786447508641302.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.