Funktionalkalkül

Funktionalkalküle s​ind ein wichtiges mathematisches Hilfsmittel z​ur Untersuchung v​on Banachalgebren. Im Rahmen d​er Operatortheorie i​st hier insbesondere d​ie Banachalgebra d​er beschränkten linearen Operatoren v​on Interesse. Zur Behandlung v​on unbeschränkten linearen Operatoren werden verallgemeinerte Funktionalkalküle betrachtet, b​ei denen z​war grundlegende algebraische Strukturen verlorengehen, d​ie aber dennoch e​in effektives Werkzeug z​um Rechnen m​it unbeschränkten Operatoren z​ur Verfügung stellen.

Ist ein komplexes Polynom und ein Element einer -Banachalgebra mit Einselement , so kann man in das Polynom einsetzen, indem man setzt. Die Grundidee der Funktionalkalküle besteht darin, dieses Einsetzen in Polynome auf größere Klassen von Funktionen auszudehnen. Für beliebige -Banachalgebren mit Einselement kann ein Element in holomorphe Funktionen, die in einer Umgebung des Spektrums von definiert sind, eingesetzt werden. Für noch größere Funktionsklassen, etwa stetige oder messbare Funktionen, die auf dem Spektrum von erklärt sind, muss man sich auf spezielle Klassen von Banachalgebren beschränken, und zwar auf C*-Algebren bzw. Von-Neumann-Algebren. Dazu muss natürlich erklärt werden, was dieses Einsetzen in Funktionen überhaupt bedeuten soll.

Polynome

Elemente einer -Banachalgebra mit Einselement können, wie in der Einleitung erwähnt, direkt in Polynome eingesetzt werden. Sind Polynome, so gilt

.

Man beachte die unterschiedlichen Rollen des Pluszeichens; auf der linken Seite werden Polynome addiert, auf der rechten Seite Elemente einer Banachalgebra. Entsprechend gilt

,

.

Bezeichnet das Spektrum von , so gilt der spektrale Abbildungssatz

.

Auf der linken Seite dieser Formel steht das Spektrum des Banachalgebren-Elementes , auf der rechten Seite steht das Bild des Spektrums von unter der Polynom-Abbildung . Der Beweis des spektralen Abbildungssatzes benutzt wesentlich, dass nicht-konstante Polynome eine Nullstelle haben, d. h., es wird der Fundamentalsatz der Algebra verwendet. Dies erklärt die Einschränkung auf -Banachalgebren.

Diese Situation ist aus der linearen Algebra wohlbekannt. Bei der Untersuchung der Diagonalisierbarkeit oder der Jordanschen Normalform werden ebenfalls Banachalgebren-Elemente, nämlich quadratische Matrizen, in Polynome eingesetzt. Beispielsweise besagt der Satz von Cayley-Hamilton, dass man die Nullmatrix erhält, wenn man eine quadratische Matrix in ihr eigenes charakteristisches Polynom einsetzt.

Zur Ausdehnung des Einsetzens auf größere Funktionsklassen betrachten wir das Einsetzen von in Polynome als Abbildung

.

Dann ist ein Algebren-Homomorphismus, der sogenannte Einsetzungshomomorphismus von , und es gilt sowie . Hat man umgekehrt einen solchen Homomorphismus von einer größeren Funktionsklasse in die Banachalgebra und ist eine Funktion dieser Klasse, so kann man die Einsetzung von in die Funktion durch die Formel definieren.

Funktionalkalküle

Die weitere Ausarbeitung d​er hier vorgestellten Ideen führt z​u unterschiedlichen Funktionalkalkülen, d​ie nach d​er verwendeten Funktionsklasse benannt sind. Als plausible Faustregel k​ann man sagen, d​ass mit größer werdenden Funktionsklassen d​ie Situationen, i​n denen zugehörige Funktionalkalküle eingesetzt werden können, spezieller werden. Typische Anwendungsbeispiele werden i​n den Artikeln z​u den einzelnen Funktionalkalkülen behandelt.

Quellen

  • J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, 1969
  • R.V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, 1983, ISBN 0123933013
  • M. Takesaki, Theory of Operator Algebras I (Springer 1979, 2002)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.