Eigenschaft T

In d​er Mathematik i​st Eigenschaft T (auch Kazhdans Eigenschaft T) e​ine Starrheitseigenschaft topologischer Gruppen, d​ie zuerst v​on David Kazhdan i​n den 1960er Jahren betrachtet wurde.

Spätere Entwicklungen zeigten, d​ass Eigenschaft T i​n vielen Gebieten d​er Mathematik e​ine Rolle spielt, darunter diskrete Untergruppen v​on Lie-Gruppen, Ergodentheorie, Random Walks, Operatoralgebren, Kombinatorik u​nd theoretische Informatik.

Eine Version, d​ie unter anderem b​ei Beweisen i​m Zimmer-Programm verwendet wird, i​st die v​on Vincent Lafforgue eingeführte starke Eigenschaft T.

Definition

Sei eine stark stetige, unitäre Wirkung einer topologischen Gruppe auf einem Hilbertraum .

Für eine kompakte Menge und heißt ein Vektor -invariant, wenn

.

hat Eigenschaft T, wenn es eine kompakte Menge und ein gibt, so dass es für jede unitäre Wirkung einen -invarianten Vektor gibt.

Beispiele

  • Jede kompakte Gruppe hat Eigenschaft T. Man kann und wählen.
  • und haben Eigenschaft T nicht.
  • Eine lokal kompakte Gruppe ist genau dann kompakt, wenn sie mittelbar ist und Eigenschaft T hat.
  • hat genau dann Eigenschaft T, wenn ist. Allgemeiner haben für jeden lokalen Körper die Gruppen mit und mit Eigenschaft T.
  • Einfache Lie-Gruppen mit haben Eigenschaft T.

Eigenschaften

  • Jede lokal kompakte Gruppe mit Eigenschaft T ist kompakt erzeugt. Insbesondere sind Gitter mit Eigenschaft T endlich erzeugt.
  • Wenn Eigenschaft T hat, dann hat Eigenschaft T für jeden Normalteiler .
  • Wenn lokal kompakt, abgeschlossen und ein endliches, reguläres, -invariantes Borel-Maß hat, dann hat genau dann Eigenschaft T, wenn dies auf zutrifft. Insbesondere hat ein Gitter genau dann Eigenschaft T, wenn dies auf zutrifft.
  • Nach dem Satz von Delorme-Guichardet hat eine Gruppe genau dann Eigenschaft T, wenn sie Eigenschaft FH hat: jede stetige Wirkung durch affine Isometrien auf einem Hilbert-Raum hat einen Fixpunkt. Äquivalent dazu muss für alle unitären Darstellungen sein.
  • Aus Eigenschaft FH folgt beispielsweise, dass jede Wirkung der Gruppe als Isometrien eines Baumes oder eines hyperbolischen Raumes einen Fixpunkt haben muss, und dass jede orientierungserhaltende, -Wirkung der Gruppe auf dem Kreis über die Wirkung einer endlichen zyklischen Gruppe faktorisiert.

Literatur

  • B. Bekka, P. de la Harpe, A. Valette: Kazhdan's Property (T). Cambridge University Press, 2008. ISBN 978-0-521-88720-5
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.