Zwölferregel

Die Zwölferregel beschreibt eine Methode, um näherungsweise normalverteilte (Pseudo-)Zufallszahlen zu erzeugen. Sie besagt, dass die Zufallsvariable näherungsweise normalverteilt ist, wenn sie mit zwölf voneinander unabhängigen, über dem Intervall [0,1] gleichverteilten Zufallszahlen erzeugt wird. hat den Erwartungswert 6 und die Standardabweichung 1.

Simulierte Normalverteilung der Zwölferregel, verglichen mit berechneter Normalverteilung (Mittelwert 6, Streuung 1).

Die Verteilung von ist eine Irwin-Hall-Verteilung, die sich mit wachsendem schnell einer Normalverteilung annähert. Grundlage für diese Aussage ist der zentrale Grenzwertsatz.

Um Normalverteilungen mit anderen Parametern zu erhalten, subtrahiert man von den erhaltenen Werten s den Erwartungswert , multipliziert mit der neuen Standardabweichung und addiert den neuen Mittelwert :

.

Die Bedeutung d​er Zwölferregel l​iegt darin, d​ass mit geringem Programmieraufwand u​nd überschaubarem Rechenaufwand passable Ergebnisse erzielt werden können. Sie benötigt k​eine komplexen mathematischen Funktionen w​ie etwa d​en Logarithmus. Heute s​ind jedoch bessere Methoden bekannt, z. B. d​ie Polar-Methode. Diese liefert wesentlich besser normalverteilte Ergebnisse m​it deutlich geringerem Rechenaufwand, w​enn der Prozessor e​ine Gleitpunkt-ALU integriert hat.

Wichtig ist bei der Anwendung der Zwölferregel die Unabhängigkeit der summierten . Bei vielen Pseudozufallszahlengeneratoren ist jedoch die Unabhängigkeit von zwölf aufeinanderfolgenden Zufallszahlen nicht gegeben. In Standardbibliotheken werden häufig Lineare Kongruenzgeneratoren eingesetzt. Der Spektraltest, der berechnet, wie viele hintereinander generierte Zufallszahlen als unabhängig betrachtet werden können, garantiert für diese nur die Unabhängigkeit von maximal sieben der , meistens weniger. Für numerische Simulationen ist es daher sehr bedenklich, die Zwölferregel mit einem nicht näher bekannten Zufallsgenerator aus der Standardbibliothek anzuwenden. Auch aus diesem Grund sind andere Verfahren wie die Polar-Methode vorzuziehen. Es gibt allerdings auch Zufallsgeneratoren, die eine sehr gute Unabhängigkeit von 12 aufeinanderfolgenden Zahlen garantieren, z. B. den Mersenne-Twister.

Beispiel von 8 Simulationen (die Abbildung basiert auf 6000): 
1     2     3     4     5     6     7     8     9     10    11    12   Sum1-12     Std1-12
0,82  0,46  0,58  0,48  0,44  0,84  0,51  0,24  0,19  0,38  0,83  0,67  6,43       0,21
0,19  0,1   0,76  0,67  0,59  0,43  0,03  0,58  0,24  0,71  0,36  0,43  5,08       0,24
0,01  0,93  0,53  0,29  0,91  0,97  0,56  0,44  0,62  0,69  0,77  0,74  7,46       0,27
0,61  0,13  0,27  0,83  0,53  0,95  0,65  0,62  0,02  0,67  0,44  0,69  6,41       0,26
0,55  0,79  0,01  0,97  0,54  0,06  0,62  0,44  0,24  0,35  0,23  0,24  5,06       0,27
0,8   0,22  0,67  0,76  0,9   0,55  1     0,19  0,3   0,58   0,5  0,22  6,68       0,27
0,84  0,45  0,14  0,19  0,17  0,78  0,03  0,48  0,7   0,27  0,64  0,35  5,03       0,26
0,09  0,97  0,27  0,16  0,87  0,05  0,72  0,1   0,28  0,8   0,43  0,29  5,01       0,32
                                                        Mittelwert:     5,9
                                                        Standardabw:    0,96
Die Simulationswerte liegen in der Nähe der berechneten Parameter: 
Standardabweichung von Xi: 0,24 (berechnet: 1/sqrt(12)= 0,29) 
Mittelwert von Xi: 0,49 (berechnet: 0,5) 
Mittelwert der Verteilung von sn: 5,9 (berechnet: 6)  
Standardabweichung von sn: 0,96 (berechnet: 1)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.