Wachstumsfaktor BDNF

Der Wachstumsfaktor BDNF (von englisch Brain-derived neurotrophic factor, deutsch etwa: „Vom Gehirn stammender neurotropher Faktor“) i​st ein Protein[2] a​us der Gruppe d​er Neurotrophine u​nd ist m​it den Nervenwachstumsfaktoren e​ng verwandt. Es k​ommt in a​llen Wirbeltieren vor. Mutationen i​m menschlichen BDNF-Gen s​ind eine Ursache für d​as Undine-Syndrom u​nd sind assoziiert m​it dem WAGR-Syndrom u​nd dem Risiko für Bulimia nervosa Typ 2.[3]

Wachstumsfaktor BDNF
Oberflächen-/Bändermodell des Tetramer von zwei Seiten, nach PDB 1BND

Vorhandene Strukturdaten: 1B8M, 1BND

Eigenschaften des menschlichen Proteins
Masse/Länge Primärstruktur 119 Aminosäuren
Sekundär- bis Quartärstruktur Monomer, Homodimer
Präkursor (229 aa)
Isoformen 5
Bezeichner
Gen-Namen BDNF ANON2; BULN2
Externe IDs
Vorkommen
Übergeordnetes Taxon Wirbeltiere[1]
Orthologe
Mensch Hausmaus
Entrez 627 12064
Ensembl ENSG00000176697 ENSMUSG00000048482
UniProt P23560 P21237
Refseq (mRNA) NM_001143805 NM_001048139
Refseq (Protein) NP_001137277 NP_001041604
Genlocus Chr 11: 27.65 – 27.72 Mb Chr 2: 109.67 – 109.73 Mb
PubMed-Suche 627 12064

Funktion und Vorkommen

BDNF wirkt auf verschiedene Neuronen des zentralen und des peripheren Nervensystems. Es wirkt beim Schutz existierender Neuronen und Synapsen[4][5] mit und fördert das Wachstum neuer. Im Gehirn ist es in Hippocampus, Großhirnrinde und dem Vorderhirn aktiv, also in Bereichen, die basal für Gedächtnis und abstraktes Denken sind.[6] Hier spielt BDNF auch eine große Rolle im Langzeitgedächtnis.[7] BDNF ist eines der aktivsten Neurotrophine und ist vor allem wichtig bei der adulten Neurogenese. Im Tierversuch zeigt sich, dass Mäuse ohne BDNF Entwicklungsdefizite im Gehirn und dem Sensorium aufweisen und meist kurz nach der Geburt sterben.[8] BDNF kommt nicht nur im Gehirn, sondern auch in zahlreichen Zelltypen und im Gewebe, der Netzhaut, den Nieren, der Prostata und menschlichem Speichel vor.[9]

BDNF und Krankheiten

Verschiedene Studien l​egen nahe, d​ass ein Mangel o​der Überschuss a​n BDNF m​it Depression[10][11], Schizophrenie[12], Zwangsstörung[13], Alzheimer-Krankheit[14], Chorea Huntington[15], Demenz[16], Anorexia nervosa[17], Bulimia nervosa[18] u​nd dem Rett-Syndrom[19] i​n Zusammenhang stehe. Auch Epilepsie u​nd das Reizdarmsyndrom wurden m​it einer Veränderung i​m BDNF i​n Zusammenhang gebracht.[20][21]

Depression

Eine Studie zeigte b​ei Mäusen, d​ass Antidepressiva (sowohl SSRI, a​ls auch trizyklische Antidepressiva) a​m BDNF-Protein binden. Sie greifen d​amit in e​inen zentralen Anpassungsmechanismus d​es Gehirns ein, d​er als synaptische Plastizität bezeichnet wird.[22] Dies könnte z​um besseren Verständnis d​es antidepressiven Wirkmechanismus beitragen.

Einzelnachweise

  1. IPR020430 Brain-derived neurotrophic factor. In: InterPro. EBI, abgerufen am 4. November 2010 (englisch).
  2. D. K. Binder, H. E. Scharfman: Brain-derived neurotrophic factor. In: Growth Factors. Band 22, Nr. 3, September 2004, S. 123–131, doi:10.1080/08977190410001723308, PMID 15518235, PMC 2504526 (freier Volltext).
  3. UniProt P23560
  4. A. Acheson, J. C. Conover, J. P. Fandl, T. M. DeChiara, M. Russell, A. Thadani, S. P. Squinto, G. D. Yancopoulos, R. M. Lindsay: A BDNF autocrine loop in adult sensory neurons prevents cell death. In: Nature. Band 374, Nr. 6521, März 1995, S. 450–453, doi:10.1038/374450a0, PMID 7700353.
  5. E. J. Huang, L. F. Reichardt: Neurotrophins: roles in neuronal development and function. In: Annu. Rev. Neurosci. Band 24, 2001, S. 677–736, doi:10.1146/annurev.neuro.24.1.677, PMID 11520916, PMC 2758233 (freier Volltext).
  6. K. Yamada, T. Nabeshima: Brain-derived neurotrophic factor/TrkB signaling in memory processes. In: J Pharmacol Sci. Band 91, Nr. 4, April 2003, S. 267–270, doi:10.1254/jphs.91.267, PMID 12719654.
  7. P. Bekinschtein, M. Cammarota, C. Katche, L. Slipczuk, J. I. Rossato, A. Goldin, I. Izquierdo, J. H. Medina: BDNF is essential to promote persistence of long-term memory storage. In: Proc. Natl. Acad. Sci. U.S.A. Band 105, Nr. 7, Februar 2008, S. 2711–2716, doi:10.1073/pnas.0711863105, PMID 18263738, PMC 2268201 (freier Volltext).
  8. P. Ernfors, J. Kucera, K. F. Lee, J. Loring, R. Jaenisch: Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice. In: Int. J. Dev. Biol. Band 39, Nr. 5, Oktober 1995, S. 799–807, PMID 8645564 (ehu.es).
  9. A. L. Mandel, H. Ozdener, V. Utermohlen: Identification of pro- and mature brain-derived neurotrophic factor in human saliva. In: Arch. Oral Biol. Band 54, Nr. 7, Juli 2009, S. 689–695, doi:10.1016/j.archoralbio.2009.04.005, PMID 19467646, PMC 2716651 (freier Volltext).
  10. Y. Dwivedi: Brain-derived neurotrophic factor: role in depression and suicide. In: Neuropsychiatr Dis Treat. Band 5, 2009, S. 433–449, PMID 19721723, PMC 2732010 (freier Volltext).
  11. A. R. Brunoni, M. Lopes, F. Fregni: A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. In: Int. J. Neuropsychopharmacol. Band 11, Nr. 8, Dezember 2008, S. 1169–1180, doi:10.1017/S1461145708009309, PMID 18752720.
  12. M. H. Xiu, L. Hui, Y. F. Dang, T. De Hou, C. X. Zhang, Y. L. Zheng, D. C. Chen, T. R. Kosten, X. Y. Zhang: Decreased serum BDNF levels in chronic institutionalized schizophrenia on long-term treatment with typical and atypical antipsychotics. In: Prog. Neuropsychopharmacol. Biol. Psychiatry. Band 33, Nr. 8, August 2009, S. 1508–1512, doi:10.1016/j.pnpbp.2009.08.011, PMID 19720106.
  13. G. Maina, G. Rosso, R. Zanardini, F. Bogetto, M. Gennarelli, L. Bocchio-Chiavetto: Serum levels of brain-derived neurotrophic factor in drug-na?ve obsessive-compulsive patients: A case-control study. In: J Affect Disord. Band 122, Nr. 1–2, August 2009, S. 174–178, doi:10.1016/j.jad.2009.07.009, PMID 19664825.
  14. C. Zuccato, E. Cattaneo: Brain-derived neurotrophic factor in neurodegenerative diseases. In: Nat Rev Neurol. Band 5, Nr. 6, Juni 2009, S. 311–322, doi:10.1038/nrneurol.2009.54, PMID 19498435.
  15. M. S. Zajac, T. Y. Pang, N. Wong, B. Weinrich, L. S. Leang, J. M. Craig, R. Saffery, A. J. Hannan: Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington’s disease mice. In: Hippocampus. Band 20, Nr. 5, Juni 2009, S. NA, doi:10.1002/hipo.20658, PMID 19499586.
  16. O. Arancio, M. V. Chao: Neurotrophins, synaptic plasticity and dementia. In: Curr. Opin. Neurobiol. Band 17, Nr. 3, Juni 2007, S. 325–330, doi:10.1016/j.conb.2007.03.013, PMID 17419049.
  17. J. M. Mercader, F. Fernández-Aranda, M. Gratacòs, M. Ribasés, A. Badía, C. Villarejo, R. Solano, J. R. González, J. Vallejo, X. Estivill: Blood levels of brain-derived neurotrophic factor correlate with several psychopathological symptoms in anorexia nervosa patients. In: Neuropsychobiology. Band 56, Nr. 4, 2007, S. 185–190, doi:10.1159/000120623, PMID 18337636.
  18. A. S. Kaplan, R. D. Levitan, Z. Yilmaz, C. Davis, S. Tharmalingam, J. L. Kennedy: A DRD4/BDNF gene-gene interaction associated with maximum BMI in women with bulimia nervosa. In: Int J Eat Disord. Band 41, Nr. 1, Januar 2008, S. 22–28, doi:10.1002/eat.20474, PMID 17922530.
  19. B. B. Zeev, A. Bebbington, G. Ho, H. Leonard, N. de Klerk, E. Gak, M. Vecsler, M. Vecksler Christodoulou J: The common BDNF polymorphism may be a modifier of disease severity in Rett syndrome. In: Neurology. Band 72, Nr. 14, April 2009, S. 1242–1247, doi:10.1212/01.wnl.0000345664.72220.6a, PMID 19349604, PMC 2677489 (freier Volltext).
  20. C. Gall, J. Lauterborn, M. Bundman, K. Murray, P. Isackson: Seizures and the regulation of neurotrophic factor and neuropeptide gene expression in brain. In: Epilepsy Res Suppl. Band 4, 1991, S. 225–245, PMID 1815605.
  21. Y. Zhang, G. Qin, D. R. Liu, Y. Wang, S. K. Yao: Increased Expression of Brain-Derived Neurotrophic Factor Is Correlated With Visceral Hypersensitivity in Patients With Diarrhea-Predominant Irritable Bowel Syndrome. 14. Januar 2019, abgerufen am 24. Mai 2020 (englisch).
  22. Wie Antidepressiva im Gehirn wirken. In: Deutsches Ärzteblatt, News, 11. Mai 2021. Originalarbeit: Plinio Casarotto et al.: Antidepressant drugs act by directly binding to TRKB neurotrophin receptor. In: Cell, 184, 5, 4. März 2021, S. 1299–1313; doi:10.1016/j.cell.2021.01.034
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.