Synechococcus
Synechococcus ist eine Gattung innerhalb der Cyanobakterien und ist fakultativ anaerob. Der Name ist vom altgriechischen συνέχεος ‚zusammenhängend‘, und κόκκος' ‚Kern‘, abgeleitet. Die Arten der Gattung leben planktisch im marinen Pelagial. Dort trägt die photoautotrophe Gattung durch Photosynthese einen wesentlichen Anteil zur Primärproduktion bei. Einige Arten finden sich auch im Süßwasser. Als Modellorganismus in der Biologie ist das Genom einer Art, S. elongatus, sequenziert worden.[1][2]
Synechococcus | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TEM-Aufnahme einer Zelle von S. elongatus PCC 7942, mit Carboxysomen[Anm. 2] als polyedrische dunkle Strukturen. | ||||||||||||
Systematik | ||||||||||||
| ||||||||||||
Wissenschaftlicher Name | ||||||||||||
Synechococcus | ||||||||||||
Nägeli, 1849 |
Merkmale
Synechococcus-Arten finden sich unizellulär (einzeln), selten als Paar oder in kleinen Gruppen. Die Zellen besitzen keine oder nur sehr dünne Gallerthüllen[5], keine Gasvesikel und sind blaugrün oder rot gefärbt. Marine Vertreter der Gattung zeigen Motilität[6]. Da die Zellen neben Chlorophyll auch das Pigment Phycoerythrin enthalten, zeigen sie bei entsprechender Anregung rote Autofluoreszenz. Sie sind ovoid oder zylindrisch geformt[7] und zwischen 0,6 µm und 1,5 µm groß.
In den Zellen lassen sich ähnlich wie bei Gloeomargarita lithophora C7 sowohl Karbonat- als auch Polyphosphat-Einschlüsse nachweisen.[8] Das deutet darauf hin, dass diese Cyanobakterien in der Lage sind, Stromatolithen zu bilden.
Spezies (Auswahl)
- Synechococcus aeruginosa
- Synechococcus bacillaris
- Synechococcus calcipolaris mit Stamm G9[8]
- Synechococcus capitatus
- Synechococcus elongatus, Nägeli (1849): Typspezies[9] mit Stamm PCC 7942, sequenziert.
- „Synechococcus sp. PCC 7002“[10][1]
- „Synechococcus sp. KORDI-49“[11][12]
- „Synechococcus sp. JA-2-3B“[13][12]
Phylogenie
Neuere Phylogenien (Stand 2021) sehen die Gattung Synechococcus polyphyletisch. Sie fassen die marinen Synechococcus und die Gattung Prochlorococcus in einer Klade „mariner Picocyanobacteria“ (auch „marine SynPro-Gruppe“ genannt) zusammen, deren letzter gemeinsamer Ahn (LGA oder MRCA) vor etwa 414 (340 bis 419) Millionen Jahren gelebt hat. Die Auseinanderentwicklung (Divergenz) dieser Gruppe und der Gattungen Cyanobium, Aphanothece, sowie anderer verwandter Synechococcus-Vertreter wird im späten Ediacarium (vor 571 Millionen Jahren) angenommen. S. sp. KORDI-49 steht dabei nahe Prochlorococcus (marine SynPro), S. elongatus zweigt dagegen vom Rest schon sehr viel früher ab; und Synechococcus sp. JA-2-3B steht im Stammbaum der Cyanobakterien fast ganz basal (nach den Gloeobacteria)[12]
Anwendungen
Forscher der Huazhong-Universität in Wuhan (China) prüfrn, ob sich Cyanobakterien der Spezies S. elongatus zur Sauerstoffversorgung im Gehirn etwa bei Schlaganfallpatienten nutzen lassen. Wegen der Lichtundurchlässigkeit des menschlichen Schädels könnten ggf. sog. upconversion nanoparticles genutzt werden. Bei Bestrahlung mit Infrarotlicht wandeln diese Partikel diese Strahlung in sichtbares Licht um, das dann von den Cyanobakterien zur Sauerstoffproduktion genutzt wird.[14] Ähnliche Studien mit Cyanobakterien und Mikroalgen und durchsichtigen Kaulquappen (Krallenfroschlarven, Xenopus laevis) wurden im selben Jahr auch an der Ludwig-Maximilians-Universität München durchgeführt. Hier war die Zielrichtung u. a. die Sauerstoffversorgung des Gehirns während einer Operation. Für das Konzept müssen allerdings eine Reihe von Schwierigkeiten gelöst werden: Geraten die Mikroorganismen außer Kontrolle, können sie Schaden anrichten, etwa indem sie zu viel Sauerstoff produzieren (Hypoxie). Ob das Konzept jemals beim Menschen anwendbar sein wird, lässt sich derzeit (2021) noch nicht abschätzen.[15]
Siehe auch
- Synechocystis
- Prochlorococcus
- Pseudonabaena
- Gloeomargarita lithophora, siehe Rhodoplast, Chloroplast, Plastid
Anmerkungen
- prokaryotisches Organell
- prokaryotisches Organell
- Abkürzungen:
HAADF: high angle annular dark field, siehe TEM-Sonderverfahren.
STEM: scanning transmission electron microscope, siehe Rasterelektronenmikroskop.
EDXS: energy dispersive X-ray spectrometry
Weblinks
Einzelnachweise
- NCBI: Synechococcus sp. PCC 7002, complete sequence: NC_010475.1
- Palenik et al. (2003): The genome of a motile marine Synechococcus. Nature 424, 1037–1042.
- NCBI: Synechococcus sp. PCC 7002 (species)
- NCBI: Synechococcus sp. PCC 7002 (species)
- John D. Wehr, Robert G. Sheath: Freshwater algae of North America: ecology and classification, Seite 81.
- B. Brahamsha (1999): Non-Flagellar Swimming in Marine Synechococcus. J. Molec. Microbiol. Biotechnol. (1999) 1(1): 59–62.
- D. M. John, Brian A. Whitton, Alan J. Brook: The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Band 1. Cambridge University Press (England) 2002.
- Jinhua Li, Isabel Margaret Oliver, Nithavong Cam et al: Biomineralization Patterns of Intracellular Carbonatogenesis in Cyanobacteria: Molecular Hypotheses,in: MDPI Minerals, Band 6, Nr. 1, 3. Februar 2016, Special Issue Biomineralization: Towards a Unification of Concepts in Chemistry, Physics, Earth Sciences and Biology, 10, doi:10.3390/min6010010
- AlgaeBase: Synechococcus C. Nägeli, 1849
- NCBI: Synechococcus sp. PCC 7002 (species)
- NCBI: Synechococcus sp. KORDI-49 (species)
- G. P. Fournier, K. R. Moore, L. T. Rangel, J. G. Payette, L. Momper, T. Bosak: The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages, Band 288, Nr. 1959, 29. September 2021, doi:10.1098/rspb.2021.0675, PMID 34583585. Siehe insbes. Fig. 2
- NCBI: Synechococcus sp. JA-2-3B… (list)
- Schlaganfalltherapie – Photosynthese im Gehirn, auf: orf.at vom 20. Mai 2021.
- Suzan Özugur et al.: Green oxygen power plants in the brain rescue neuronal activity, in: Cell iScience, Band 24, Nr. 10, 103158, 22. Oktober 2021, doi:10.1016/j.isci.2021.103158, Epub 13. Oktober 2021. Dazu:
- Nadja Podbregar: Mikroalgen als grüne Lunge für Gehirn und Gewebe – Photosynthetische Mikroalgen im Blut können Nervenzellen mit Sauerstoff versorgen, auf: scinexx vom 15. Oktober 2021.
- Carly Cassella: Injecting Algae Into Suffocated Tadpoles Brings Their Brain Cells Back to Life, auf: sciencealert vom 15. Oktober 2021 (englisch).