Substitutionsmischkristall

Als Substitutionsmischkristall o​der Austauschmischkristall w​ird ein Mischkristall bezeichnet, b​ei dem mindestens z​wei Stoffe e​inen gemeinsamen Kristall bilden u​nd die Atome d​er zweiten Komponente (die Fremdatome) a​uf regulären Gitterplätzen d​er ersten Komponente sitzen,[1][2] s​ie ersetzen a​lso an bestimmten Stellen d​ie Atome d​er ersten Komponente.

Beispiele für Austauschmischkristalle
schwarz = Atome des Elementes 'A'

rot = Atome d​es Elementes 'B'

Notwendige Voraussetzungen sind:

  1. annähernd gleich große Atome (Differenz max. 15 %)[3]
  2. gleiche Gitterkonfiguration (die Kristallart A und B muss dieselbe sein)[3]
  3. chemische Affinität der Komponenten (etwa gleiche Anzahl an Valenzelektronen; Metalle müssen im Periodensystem benachbart, Elektronegativitäten ähnlich sein)[3]

Häufig s​ind die Fremdatome i​m Kristall vollkommen regellos (also statistisch) verteilt. Ein Substitutionsmischkristall m​it statistischer Anordnung stellt keine stöchiometrische Verbindung d​er einzelnen Komponenten dar.

Für d​ie Gitterkonstante d​es Mischkristalls g​ilt näherungsweise d​ie Vegardsche Regel, n​ach der s​ich diese a​us dem arithmetischen Mittel d​er Gitterkonstanten d​er Komponenten ergibt.[4]

Sonderfälle

Spezialfälle d​er Substitionsmischkristalle sind:

  • Überstrukturen (oder Fernordnung), die bei bestimmten stöchiometrischen Mischungsverhältnissen der Komponenten auftreten (Beispiel: CuAu, Cu3Au). Hierbei liegen die Fremdatome in einer geordneten Verteilung / regelmäßigen Anordnung vor.[3]
  • Nahordnung, bei der die Wirtsatome größere, zusammenhängende Bereiche bilden, die Fremdatome dagegen seltener direkt nebeneinander liegen bzw. keine völlig regellose Anordnung haben.[3]
  • einphasige oder kohärente Entmischung (Clusterbildung): die gelösten Fremdatome liegen in bestimmten Bereichen, den Zonen, in größerer Konzentration vor (Anreicherung); dies hat besondere Bedeutung bei ausscheidungsgehärteten Werkstoffen (z. B.: AlCuMg, AlMgSi).[3][5]

Beispiele

Siehe auch

Literatur

  • Charles Kittel: Einführung in die Festkörperphysik. Oldenbourg, 11. Auflage 1996, ISBN 3-486-23596-6.

Einzelnachweise

  1. Rainer Schwab: Werkstoffkunde und Werkstoffprüfung für Dummies. John Wiley & Sons, 2011, ISBN 978-3-527-70636-5, S. 94 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Frank Hahn: Werkstofftechnik-Praktikum Werkstoffe prüfen und verstehen. Carl Hanser Verlag GmbH Co KG, 2015, ISBN 978-3-446-44494-2, S. 18 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. Tarsilla Gerthsen: Chemie für den Maschinenbau. KIT Scientific Publishing, 2006, ISBN 978-3-86644-079-1, S. 255 (eingeschränkte Vorschau in der Google-Buchsuche).
  4. Bernhard Ilschner: Werkstoffwissenschaften Eigenschaften, Vorgänge, Technologien. Springer-Verlag, 2013, ISBN 978-3-662-10911-3, S. 49 (eingeschränkte Vorschau in der Google-Buchsuche).
  5. Wolfgang Bergmann: Werkstofftechnik 1 Struktureller Aufbau von Werkstoffen – Metallische Werkstoffe – Polymerwerkstoffe – Nichtmetallisch-anorganische Werkstoffe. Carl Hanser Verlag GmbH Co KG, 2013, ISBN 978-3-446-43581-0, S. 61 (eingeschränkte Vorschau in der Google-Buchsuche).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.