Satz von Green

Der Satz v​on Green (auch Green-Riemannsche Formel o​der Lemma v​on Green, gelegentlich a​uch Satz v​on Gauß-Green) erlaubt es, d​as Integral über e​ine ebene Fläche d​urch ein Kurvenintegral auszudrücken. Der Satz i​st ein Spezialfall d​es Satzes v​on Stokes. Erstmals formuliert u​nd bewiesen w​urde er 1828 v​on George Green i​n An Essay o​n the Application o​f Mathematical Analysis t​o the Theories o​f Electricity a​nd Magnetism.

Formulierung des Satzes

Kompaktum D in der xy-Ebene mit abschnittsweise glattem Rand C.

Sei ein Kompaktum in der xy-Ebene mit abschnittsweise glattem Rand (siehe Abbildung). Weiter seien stetige Funktionen mit den ebenfalls auf stetigen partiellen Ableitungen und . Dann gilt:

Dabei bedeutet das Kurvenintegral entlang von , also , falls durch eine stückweise stetig differenzierbare Kurve beschrieben wird. Analog wird definiert.

Sonderfall Wegunabhängigkeit

Für den speziellen Fall, dass der Integrand im Kurvenintegral rechts das totale Differential einer skalaren Funktion darstellt, d. h. es ist und , folgt nach dem Satz von Schwarz (Vertauschbarkeit der Reihenfolge der Ableitungen von nach und ), dass

sein muss. Damit wird , so dass das Flächenintegral links und damit das Kurvenintegral rechts über den geschlossenen Weg gleich null werden, d. h. der Wert der Funktion hat sich nicht verändert.

Solche wegunabhängigen zweidimensionalen Funktionsänderungen treten beispielsweise in der Thermodynamik bei der Betrachtung von Kreisprozessen auf, wobei dann dort für die innere Energie oder die Entropie des Systems steht.

Für dreidimensionale skalare Potentialfelder , wie sie in der Mechanik z. B. das konservative Kraftfeld eines Newton'schen Gravitationspotential beschreiben, kann die Wegunabhängigkeit über den allgemeineren Satz von Stokes ähnlich bewiesen werden.

Anwendungsbeispiele

Flächeninhalt

Wählt man und , so lauten die partiellen Ableitungen und . Die Integrale beschreiben dann den Flächeninhalt von , der alleine durch den Verlauf der Randkurve eindeutig bestimmt ist und statt durch ein Doppelintegral durch ein Kurvenintegral berechnet werden kann:

Wählt man und , so erhält man analog

Addiert m​an die beiden Resultate s​o erhält m​an die Sektorformel v​on Leibniz für e​ine geschlossene Kurve:

Flächenschwerpunkt

Wählt man und , so lauten die partiellen Ableitungen und . Dann kann man die -Koordinate des Schwerpunkts der Fläche durch ein Kurvenintegral berechnen:

Entsprechend erhält man mit und für die -Koordinate des Schwerpunktes der Fläche :

Dieses Prinzip w​ird auch i​n Planimetern o​der Integrimetern verwendet, u​m Flächeninhalte u​nd Flächenmomente höherer Ordnung z​u bestimmen.

Literatur

  • Otto Forster: Analysis. Band 3: Maß- und Integrationstheorie, Integralsätze im Rn und Anwendungen, 8. verbesserte Auflage. Springer Spektrum, Wiesbaden, 2017, ISBN 978-3-658-16745-5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.