Poincaré-Dualität

Die Poincaré-Dualität, benannt n​ach Henri Poincaré, i​st in d​er algebraischen Topologie e​in grundlegender Zusammenhang zwischen d​er Homologie u​nd der Kohomologie v​on orientierbaren Mannigfaltigkeiten.

Aussage

Sei eine n-dimensionale geschlossene orientierbare Mannigfaltigkeit und eine natürliche Zahl, dann ist die k-te singuläre Kohomologiegruppe isomorph zur (n  k)-ten singulären Homologiegruppe .[1] Der Isomorphismus wird durch das Cap-Produkt mit der Fundamentalklasse realisiert.

Insbesondere gilt damit für die Betti-Zahlen .

Geschichte

Die Identität wurde zuerst 1893 von Poincaré behauptet. 1895 gab er einen Beweis in Analysis Situs[2], wobei er Betti-Zahlen zunächst über Ketten von Untermannigfaltigkeiten (statt wie in seinen späteren Arbeiten über Ketten von Simplizes) definierte und zum Beweis Schnittzahlen von Untermannigfaltigkeiten benutzte. In den Addenda zu Analysis Situs definierte er Homologie als simpliziale Homologie triangulierter Mannigfaltigkeiten (diskutierte aber nicht ihre Unabhängigkeit von der Triangulierung) und gab dann den heute üblichen Beweis des Dualitätssatzes über duale Triangulierungen.

Glatte Mannigfaltigkeiten

Ist die Mannigfaltigkeit zusätzlich noch glatt, dann gibt es neben der singulären Kohomologie auch die De-Rham-Kohomologie. Nach dem Satz von de Rham sind die entsprechenden singulären Kohomologie- und De-Rham-Kohomologiegruppen isomorph. Mit wird der Raum der k-Differentialformen bezeichnet. Der Hodge-Stern-Operator

induziert für jedes einen Isomorphismus zwischen den De-Rham-Kohomologiegruppen. Folgendes Diagramm kommutiert also:[3]

Literatur

  • Herbert Seifert, William Threlfall: Lehrbuch der Topologie, Teubner 1934. Scan der englischen Übersetzung (PDF; 7,4 MB)
  • Schubert, Horst: Topologie. Eine Einführung. Mathematische Leitfäden B. G. Teubner Verlagsgesellschaft, Stuttgart 1964
  • Munkres, James R.: Elements of algebraic topology. Addison-Wesley Publishing Company, Menlo Park, CA, 1984.

Einzelnachweise

  1. Edwin H. Spanier: Algebraic Topology. 1. corrected Springer edition, Reprint. Springer, Berlin u. a. 1995, ISBN 3-540-90646-0, 296–297.
  2. Henri Poincaré, Analysis Situs, Journal de l’École Polytechnique ser 2, 1 (1895) pages 1–123.
  3. Klaus Jänich: Vektoranalysis. Springer, Berlin März 2005, ISBN 3-540-23741-0, S. 129–130.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.