Imide

Imide (Imidoverbindungen) s​ind eine Stoffgruppe organischer Verbindungen m​it der funktionellen Gruppe R–C(O)–NR–C(O)–R,. Es handelt s​ich somit u​m Carbonsäureamide m​it zwei Acylgruppen a​m Stickstoff.

Allgemeine Struktur der Imide (oben), von N-Organylphthalimid (Mitte) als Zwischenprodukt der Gabriel-Synthese und von Phthalimid (unten). R1 bis R3 sind Wasserstoffatome oder Organyl-Reste (Alkyl-Reste, Alkenyl-Reste, Aryl-Reste, Alkylaryl-Reste etc.). Die Imidgruppe ist blau markiert.

In d​er anorganischen Chemie werden Verbindungen, i​n denen d​ie zweiwertige Gruppe =NH a​n ein Metall o​der an andere Elemente w​ie Schwefel[1], Bor[1], Germanium[2] o​der Phosphor[3] gebunden ist, a​ls Metallimide (Beispiel Lithiumimid, Li2NH) bzw. Schwefelimide, Borimide, Phosphorimide usw. bezeichnet. Auch Imidobischwefelsäure (Imidosulfonsäure, (HSO3)2NH) zählt z​u den Imiden.[4]

Die organischen Verbindungen m​it der Gruppe C=NH werden a​ls Imine bezeichnet.

Struktur

Die Imidogruppe h​at die Form: R2–C(O)–NR1–C(O)–R3, w​obei C(O) jeweils e​ine Carbonylfunktion darstellt. R1, R2 u​nd R3 s​ind beliebige organische Reste (wie Alkyl- o​der Arylgruppen) o​der Wasserstoffatome.

Chemie

Die Imidogruppe wird aus zwei Carbonsäuren (oder einer Dicarbonsäure) und aus Ammoniak oder einem primären Amin gebildet. Ein häufig verwendetes Imid ist Phthalimid, das aus Phthalsäure und Ammoniak aufgebaut wird. Falls der Rest R1 ein Wasserstoffatom ist (R1=H), besitzt die Imidogruppe aufgrund des starken −M-Effekts der beiden Carbonylgruppen im Falle einer Deprotonierung eine ausgeprägte Delokalisierungsmöglichkeit der negativen Ladung. Im Vergleich zur Amidogruppe (R1–CO–NR2R3) ist die Ladung somit nach der Deprotonierung besser stabilisiert und folglich die Säurestärke des Imids größer. Deshalb entsteht bei der Umsetzung von Phthalimid mit Kaliumhydroxid Phthalimid-Kalium, ein Salz, das in der Gabriel-Synthese als Nucleophil zur Herstellung von N-Organyl-Phthalimiden eingesetzt wird. Die N-Organyl-Phthalimide werden dann in primärere Amine umgewandelt, meist durch Hydrazinolyse (Erhitzen mit Hydrazin).[5][6]

Einzelnachweise

  1. Holleman, Wiberg: Grundlagen und Hauptgruppenelemente Band 1: Grundlagen und Hauptgruppenelemente. Walter de Gruyter GmbH & Co KG, 2016, ISBN 978-3-11-049585-0, S. 675 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. R. J. Meyer: Germanium. Springer-Verlag, 2013, ISBN 978-3-662-11817-7, S. 38 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. R. J. Meyer: Phosphor Teil C. Die Verbindungen des Phosphors. Springer-Verlag, 2013, ISBN 978-3-662-11551-0, S. 325 (eingeschränkte Vorschau in der Google-Buchsuche).
  4. Brockhaus ABC Chemie, VEB F. A. Brockhaus Verlag Leipzig 1965, S. 571.
  5. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 490, ISBN 3-342-00280-8.
  6. Wilhelm Flitsch, R. Heidhues, H. Peters, E. Gerstmann, V. v. Weissenborn, H.-D. Bartfeld, B. Müter, K. Gurke Gurke: Imide, Imidoide und Enamide. Springer-Verlag, 2013, ISBN 978-3-663-19751-5, S. 25 (eingeschränkte Vorschau in der Google-Buchsuche).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.