Extremalpunkt

Ein Extremalpunkt einer konvexen Menge K eines reellen Vektorraums ist ein Punkt x aus K, der sich nicht als Konvexkombination zweier verschiedener Punkte aus K darstellen lässt, also zwischen keinen zwei anderen Punkten aus K liegt. Das heißt, es gibt keine Punkte mit für ein .

Erläuterungen und Beispiele

Extremalpunkte (rot) einer konvexen Menge K (blau und rot) können nicht als Konvexkombination zweier verschiedener Punkte aus K dargestellt werden
  1. Ein Punkt ist genau dann ein Extremalpunkt der konvexen Menge , wenn die Restmenge ihrerseits eine konvexe Menge ist.
  2. Ein Dreieck ist eine konvexe Menge, die Extremalpunkte sind genau die Ecken des Dreiecks.
  3. Eine abgeschlossene Kugel im ist konvex, die Extremalpunkte sind genau die Randpunkte. Das gilt in allen Hilberträumen oder allgemeiner in allen strikt konvexen Räumen. Eine offene Kugel hat keine Extremalpunkte.
  4. Die positiven Funktionale mit Norm 1 einer kommutativen C*-Algebra bilden eine konvexe Menge. Die Extremalpunkte sind genau die multiplikativen Funktionale.
  5. Nach dem Satz von Birkhoff und von Neumann sind die Permutationsmatrizen genau die Extremalpunkte der doppelt-stochastischen Matrizen.

Anwendungen

Abschlusseigenschaften

Die Menge der Extremalpunkte ist im Allgemeinen nicht abgeschlossen. Ein dreidimensionales Beispiel erhält man durch das Zusammenfügen zweier schiefer Kegel zu einem Doppelkegel, so dass die Verbindungsstrecke zwischen den Spitzen und (siehe nebenstehende Skizze) auf den Mantelflächen verläuft und die gemeinsame Kreislinie in einem Punkt trifft. Die Menge der Extremalpunkte dieses Doppelkegels besteht aus den Kegelspitzen und und allen Punkten der Kreislinie ohne , denn dieser Punkt lässt sich ja aus und konvex kombinieren. liegt aber im Abschluss der Extremalpunktmenge.

Im unendlichdimensionalen Fall kann die Menge der Extremalpunkte dicht liegen. Ein einfaches Beispiel ist die Einheitskugel in einem unendlichdimensionalen Hilbertraum mit der schwachen Topologie (bezüglich dieser ist kompakt). Die Extremalpunktmenge ist die Menge aller Vektoren mit Länge 1. Um zu sehen, dass die Extremalpunktmenge dicht in liegt, sei ein Vektor mit und eine schwache Umgebung von . Dann gibt es Vektoren und ein mit . Da unendlichdimensional ist, gibt es einen zu den orthogonalen Vektor und dann ein , so dass der Vektor die Länge 1 hat und folglich ein Extremalpunkt ist. Da , folgt . Damit ist gezeigt, dass jede schwache Umgebung eines Vektors der Länge < 1 einen Extremalpunkt enthält. Daher fällt der Abschluss der Extremalpunktmenge mit zusammen.

Extremale Mengen

Die Definition e​ines Extremalpunktes lässt s​ich auf natürliche Weise a​uf Mengen übertragen: Eine extremale Menge i​st eine Teilmenge e​iner konvexen Menge m​it der Eigenschaft, d​ass sich Punkte a​us dieser Menge n​ur dann a​ls Konvexkombination v​on Punkten a​us der konvexen Menge darstellen lassen, w​enn diese Punkte bereits i​n der Teilmenge selbst enthalten sind. Formal:

Sei ein Vektorraum, konvex und . Dann ist eine extremale Menge, falls gilt:

Typische Beispiele s​ind Seiten o​der Kanten v​on Polyedern. Ein o​ft benutzter Satz ist, d​ass Extremalpunkte v​on extremalen Mengen bereits Extremalpunkte d​er umgebenden konvexen Menge sind.

Literatur

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.