Clusterzerfall

Der Clusterzerfall (auch Clusteremission, englisch cluster decay) i​st ein s​ehr selten auftretender radioaktiver Zerfallstyp. Dabei w​ird ein leichter Atomkern emittiert, d​er schwerer a​ls ein Alpha-Teilchen, a​ber mit 6 b​is 14 Prozent d​er Masse d​es Mutterkerns wesentlich leichter a​ls die typischen Spaltfragmente d​er Kernspaltung ist. Außerdem werden k​eine Neutronen freigesetzt.

Als emittierte Cluster beobachtet wurden bisher Kerne zwischen Kohlenstoff-14 u​nd Silicium-34. Es handelt s​ich überwiegend n​icht um d​ie jeweils stabilsten Kerne z​u ihrer Ordnungszahl, sondern u​m deren Isotope m​it höherem Neutronenüberschuss, entsprechend d​em Neutronenüberschuss d​es Mutterkerns.

Geschichte

Der Clusterzerfall w​urde von Aureliu Săndulescu, Dorin N. Poenaru u​nd Walter Greiner 1980 theoretisch vorhergesagt.[1] H. J. Rose u​nd George Arnold Jones erbrachten 1983 a​n der University o​f Oxford d​en ersten experimentellen Nachweis, d​er Anfang 1984 i​n der Zeitschrift Nature veröffentlicht wurde.[2] Sie stellten fest, d​ass das Radiumisotop Radium-223 (ein Alpha-Strahler m​it einer Halbwertszeit v​on 11,43 Tagen) u​nter Emission e​ines Kohlenstoff-14-Atomkerns direkt z​u Blei-209 zerfallen kann:

Art und Auftreten

Der Clusterzerfall w​urde bisher n​ur bei einigen alphastrahlenden Radionukliden m​it Ordnungszahlen a​b 87 (Francium) beobachtet. Aufgrund dieses Auftretens v​on Cluster- u​nd Alpha-Zerfall b​eim gleichen Nuklid spricht m​an bei d​en betroffenen Nukliden v​on einem dualen Kernzerfall. Der Clusterzerfall k​ann kernphysikalisch a​ls stark asymmetrische Kernspaltung verstanden werden.[3]

Der Name „Cluster“ (engl. cluster, e​twa „Klumpen“) w​urde gewählt, w​eil das emittierte Teilchen e​ine „Anhäufung“ v​on mehr a​ls je z​wei Protonen u​nd Neutronen ist.

Die Wahrscheinlichkeit für einen Clusterzerfall ist im Vergleich zum Alpha-Zerfall um den Faktor 109 bis 1016 geringer.[4] Nach bisherigen Beobachtungen haben die emittierten Cluster eine Protonenanzahl zwischen 6 und 14. Die bevorzugt emittierten Cluster sind Kohlenstoff-14, Neon-24 und Magnesium-28. Die Ausstoßgeschwindigkeit des Clusters liegt zwischen 16000 und 22000 km/s, die Rückstoßgeschwindigkeit des Tochterkern zwischen 1100 und 3600 km/s.

stattfindender
Cluster-Zerfall
Magische
Zahl(en)
E
(MeV)
221Fr207Tl + 14C N=126; N=8 31,292 14,52
221Ra207Pb + 14C Z=82; N=8 32,395 13,39
222Ra208Pb + 14C Z=82, N=126; N=8 33,049 11,01
223Ra209Pb + 14C Z=82; N=8 31,828 15,20
224Ra210Pb + 14C Z=82; N=8 30,535 15,68
226Ra212Pb + 14C Z=82; N=8 28,196 21,19
223Ac209Bi + 14C N=126; N=8 33,064 12,60
223Ac208Pb + 15N Z=82, N=126; N=8 39,473 > 14,76
225Ac211Bi + 14C N=8 30,476 17,16
226Th208Pb + 18O Z=82, N=126; Z=8 45,726 > 15,30
228Th208Pb + 20O Z=82, N=126; Z=8 44,722 20,72
230Th206Hg + 24Ne N=126 57,761 24,61
232Th208Hg + 24Ne - 54,509 > 29,20
232Th206Hg + 26Ne N=126 55,964 > 29,20
231Pa208Pb + 23F Z=82, N=126 51,843 26,02
231Pa207Tl + 24Ne N=126 60,410 23,23
230U 208Pb + 22Ne Z=82, N=126 61,387 19,57
232U 208Pb + 24Ne Z=82, N=126 62,309 21,08
232U 204Hg + 28Mg - 74,318 > 22,26
233U 209Pb + 24Ne Z=82 60,485 24,83
233U 208Pb + 25Ne Z=82, N=126 60,776 24,84
233U 205Hg + 28Mg - 74,225 > 27,59
234U 210Pb + 24Ne Z=82 58,825 25,92
234U 208Pb + 26Ne Z=82, N=126 59,464 25,92
234U 206Hg + 28Mg N=126 74,110 27,54
235U 211Pb + 24Ne Z=82 57,362 27,42
235U 210Pb + 25Ne Z=82 57,756 27,42
235U 207Hg + 28Mg - 72,158 > 28,10
235U 206Hg + 29Mg N=126 72,485 > 28,09
236U 212Pb + 24Ne Z=82 55,944 > 25,90
236U 210Pb + 26Ne Z=82 56,744 > 25,90
236U 208Hg + 28Mg - 70,564 27,58
236U 206Hg + 30Mg N=126 72,303 27,58
237Np207Tl + 30Mg N=126 74,818 > 26,93
236Pu208Pb + 28Mg Z=82, N=126 79,669 21,67
238Pu210Pb + 28Mg Z=82 75,911 25,70
238Pu208Pb + 30Mg Z=82, N=126 76,823 25,70
238Pu206Hg + 32Si N=126 76,823 25,70
240Pu206Hg + 34Si N=126; N=20 91,191 25,27
241Am207Tl + 34Si N=126; N=20 93,927 > 24,41
242Cm208Pb + 34Si Z=82, N=126; N=20 96,510 23,15

In d​er Karlsruher Nuklidkarte v​on 2018 s​ind 20 Radionuklide aufgeführt, d​ie neben d​em dominierenden Alphazerfall a​uch Clusteremission aufweisen:[5]

Bei einigen Radionukliden s​ind bis z​u vier Möglichkeiten d​es Clusterzerfalls beobachtet worden, beispielsweise d​rei bei d​em in d​er Natur vorkommenden Uranisotop Uran-234: d​ie Emission e​ines Neon-24-, e​ines Neon-26- o​der eines Magnesium-28-Kerns.

ReaktionVerzweigungs-
verhältnis (%)
E
(MeV)
ClusterGeschw.
(km/s)
Tochter­kernGeschw.
(km/s)
0,9·10−960,485Neon-24020.866Blei-210002.390
0,9·10−960,776Neon-26020.024Blei-208002.503
1,4·10−974,225Magne­sium-28021.222Queck­silber-206002.884
Zum Vergleich: Alpha-Zerfall
≈10004,859Helium-4016.567Thorium-230000.264

Experimentell nachgewiesene Clusterzerfälle

Die rechts stehende Tabelle g​ibt eine Übersicht über experimentell nachgewiesene Clusterzerfälle[6][7] m​it folgenden Angaben:

  • der  stattfindende Cluster-Zerfall  mit beteiligten Kernen: Mutterkern → Tochterkern + Cluster ,
  • als Protonen- (Z) oder Neutronenzahl (N) der Zerfallsprodukte auftretende  Magische Zahl(en) ,
  • die auf Grund des Massendefekts freiwerdende Energie  E  in MeV:  ,
Entstehende Clusterkerne:[8][9]
Ele­ment Neutronenzahl
133 134 135 136 137 138 139 140 141 142 143 144 145 146
87Fr 14C
88Ra 14C 14C 14C 14C 14C
89Ac 14C
15N
14C
90Th 18O 20O 24Ne 24Ne
26Ne
91Pa 23F
24Ne
92U 22Ne 24Ne

28Mg
24Ne
25Ne
28Mg
24Ne
26Ne
28Mg
24Ne
25Ne
28Mg
29Mg
24Ne
26Ne
28Mg
30Mg
93Np 30Mg
94Pu 28Mg 28Mg
30Mg
32Si


34Si
95Am 34Si
96Cm 34Si
Entstehende Tochterkerne (meist Blei, Quecksilber, selten Thallium, Bismut)
Ele­ment Neutronenzahl
133 134 135 136 137 138 139 140 141 142 143 144 145 146
87Fr 207Tl
88Ra 207Pb 208Pb 209Pb 210Pb 212Pb
89Ac 209Bi
208Pb
211Pb
90Th 208Pb 208Pb 206Hg 208Hg
206Hg
91Pa 208Pb
207Tl
92U 208Pb 208Pb

204Hg
209Pb
208Pb
205Hg
210Pb
208Pb
206Hg
211Pb
210Pb
207Hg
206Hg
212Pb
210Pb
208Hg
206Hg
93Np 207Tl
94Pu 208Pb 210Pb
208Pb
206Hg


206Hg
95Am 207Tl
96Cm 208Pb

Literatur

  • Christian Beck (Hrsg.): Clusters in Nuclei. Band 1 (= Lecture Notes in Physics. Band 818). Springer, 2010, ISBN 978-3-642-13898-0.
  • Christian Beck (Hrsg.): Clusters in Nuclei. Band 2 (= Lecture Notes in Physics. Band 848). Springer, 2012, ISBN 978-3-642-24706-4.
  • Doru S. Delion: Theory of Particle and Cluster Emission. (= Lecture Notes in Physics. Band 819). Springer, 2010, ISBN 978-3-642-14405-9.

Einzelnachweise

  1. Aureliu Săndulescu, Dorin N. Poenaru, Walter Greiner: New type of decay of heavy nuclei intermediate between fission and a decay. In: Soviet Journal of Particles and Nuclei. Band 11, Nummer 6, 1980, S. 528 (= Fizika Elementarnykh Chastits i Atomnoya Yadra). Band 11, 1980, S. 1334.
  2. H. J. Rose, G. A. Jones: A new kind of natural radioactivity. In: Nature. Band 307, Nummer 5948, 19. Januar 1984, S. 245–247 doi:10.1038/307245a0.
  3. K. Bethge, G. Walter. W. Wiedemann: Kernphysik. 2. Auflage. Springer 2001, ISBN 3-540-41444-4, S. 236.
  4. K. H. Lieser: Nuclear and Radiochemistry. 2001, ISBN 3-527-30317-0, S. 67.
  5. J. Magill, R. Dreher, Zs. Sóti: Karlsruher Nuklidkarte. 10. Auflage. Nucleonica GmbH, Karlsruhe 2018, ISBN 978-3-943868-51-7 (Wandkarte) bzw. ISBN 978-3-943868-54-8 (Faltkarte), ISBN 978-3-943868-50-0 (Begleitbroschüre).
  6. K. P. Santhosh, B. Priyanka, M. S. Unnikrishnan: Cluster decay half lives of trans-lead nuclei within the Coulomb and proximity potential model. In: Nuclear Physics A. Band 889, 2012, S. 29–50, doi:10.1016/j.nuclphysa.2012.07.002, arxiv:1207.4384.
  7. Attila Vértes, Sándor Nagy, Zoltán Klencsár, Rezso György Lovas (Hrsg.): Handbook of Nuclear Chemistry. Vol. 1: Basics of Nuclear Science. 2. Auflage. Springer, 2010, ISBN 978-1-4419-0719-6, S. 840–841.
  8. D. N. Poenaru, Y. Nagame, R. A. Gherghescu, W. Greiner: Systematics of cluster decay modes. In: Physical Review C. Band 65, Nummer 4, 2002, S. 054308, doi:10.1103/PhysRevC.65.054308.
  9. D. N. Poenaru, Y. Nagame, R. A. Gherghescu, W. Greiner: Erratum: Systematics of cluster decay modes, [Phys. Rev. C 65, 2002, S. 054308]. In: Physical Review C. Band 66, Nummer 4, 2002, S. 049902(E), doi:10.1103/PhysRevC.66.049902.
  • Literaturübersicht
  • D. N. Poenaru, W. Greiner: Cluster radioactivity – past, present and future. Workshop on State of the Art in Nuclear Cluster Physics, May 13–16, 2008, Strasbourg (theory.nipne.ro PDF, 52 Seiten).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.