Cantor-Raum

Der Cantor-Raum (nach dem deutschen Mathematiker Georg Cantor) ist ein topologischer Raum. Er ist – neben dem Baire-Raum – von besonderer Bedeutung für die deskriptive Mengenlehre. Er findet Anwendungen in den Theorien unendlicher Spiele und unendlicher Automaten. Der Cantor-Raum wird dabei in der Regel als Raum aller Folgen auf der Menge angesehen. Er ist homöomorph zur Cantor-Menge, einem Teilraum der reellen Zahlen, d. h. sämtliche topologischen Eigenschaften sind dieselben. Dieser Artikel behandelt dabei den Raum aus der Sicht der deskriptiven Mengenlehre, wobei etwa die Einbettung in die reellen Zahlen keine Rolle spielt.

Definition

Sei die Menge aller Folgen von Werten oder . Betrachtet man auf die diskrete Topologie, so ergibt sich dadurch mittels der Produkttopologie eine Topologie auf . mit dieser topologischen Struktur heißt Cantor-Raum. Da mit der diskreten Topologie ein kompakter polnischer Raum ist, ist auch dieses abzählbare Produkt ein kompakter polnischer Raum. Eine konkretere Vorgehensweise, um zu zeigen, dass es sich um einen polnischen Raum handelt, ist wie folgt: Die Topologie wird durch eine Metrik induziert, die wie folgt gegeben ist:

Hierbei bezeichne die erste Stelle, in der sich die Folgen und unterscheiden. Es handelt sich dabei sogar um eine Ultrametrik. Der Raum ist separabel, da die schlussendlich werdenden Folgen eine abzählbare, dichte Teilmenge bilden. Die Vollständigkeit lässt sich analog zu den reellen Zahlen zeigen, mittels der dyadischen Entwicklung entsprechen die reellen Zahlen im Intervall , gerade solchen Folgen, wobei allerdings auf unendlich viele en endende Folgen mit auf unendlich viele en endenden Folgen identifiziert werden.

Eigenschaften der Topologie

Viele Eigenschaften d​es Cantor-Raums s​ind analog z​u solchen d​es Baire-Raums, e​twa mögliche Charakterisierungen d​er Stetigkeit u​nd der Konvergenz:

Eine Funktion ist genau dann in einem Punkt stetig, wenn für jedes ein existiert, sodass die ersten Stellen von die ersten Stellen von bestimmen.[1] Eine Folge konvergiert genau dann, wenn für jedes ein existiert, sodass ab dem -ten Folgenglied die ersten Stellen stets übereinstimmen. Dies ist anders als bei der dyadischen Entwicklung reeller Zahlen, dort können aufgrund der oben genannten Identifikation die Stellen in der Entwicklung bei rationalen, dyadischen Grenzwerten völlig andere sein (0,1, 0,11, 0,111, … konvergiert gegen 1,000…).

Da d​er Cantor-Raum ultrametrisierbar ist, i​st er total unzusammenhängend u​nd somit s​ogar ein Stone-Raum. Zudem i​st er e​in perfekter polnischer Raum, d​a er k​eine isolierten Punkte enthält.

Der Cantor-Raum i​st in d​em Sinne universell für d​ie kompakten polnischen Räume, d​ass jeder kompakte polnische Raum stetiges Bild d​es Cantor-Raums i​st (Satz v​on Alexandroff-Urysohn)[2][3].

Verschiedene Cantor-Räume

Es stellt sich heraus, dass der Cantor-Raum homöomorph zu zahlreichen ähnlichen oder abgeleiteten Strukturen ist, was ihn in der deskriptiven Mengenlehre und der Automaten- und Spieltheorie leicht handhabbar macht: ist homöomorph zu für , und . Somit kann man zum Beispiel einfach von Projektionen von Mengen sprechen, ohne in einen Produktraum wechseln zu müssen. Oder es lassen sich etwa Relationen zwischen Elementen des Cantor-Raums genauso wie einfache Teilmengen behandeln.

Visualisierung des nebenstehenden Homöomorphismus: Oben die Teilräume von Mengen mit gemeinsamem Präfix in nach Präfixen angeordnet (oberste Ebene: gesamter Raum, zweite: Unterräume mit Präfix , oder , …), unten in . Das Bild eines Teilraums trägt dieselbe Farbe.

Auch Folgen über größeren endlichen Mengen führen zu derselben Topologie. Es spielt also für die topologischen Betrachtungen keine Rolle, wenn man etwa bei einer Anwendung in der Automatentheorie nicht-binäre Alphabete zulässt. Sei etwa ein Raum mit der Produkttopologie und gegeben. Definiere nun eine Abbildung , die jedes Folgenglied durch ein binäres Wort mit

für , sonst

ersetzt. ist ein Homöomorphismus, denn: Sind im die ersten Stellen festgelegt, so sind es im Bild auch mindestens so viele. Umkehrung stetig: Sind im die ersten Stellen festgelegt, so sind es im Bild auch mindestens viele.

Tatsächlich i​st sogar j​eder perfekte, polnische Stone-Raum homöomorph z​um Cantor-Raum (äquivalent dazu: j​eder perfekte, metrisierbare Stone-Raum).[4][5] (siehe nächster Abschnitt z​um Beweis)

Schlussendlich s​ei noch e​in Homöomorphismus z​ur Cantor-Menge genannt: Die Funktion

ist ein Homöomorphismus auf ihr Bild – die Cantor-Menge, die Menge der reellen Zahlen im abgeschlossenen Einheitsintervall, deren ternäre Entwicklung keinerlei en enthält. Die Topologie des Cantor-Raums wird mittels dieses Homöomorphismus also auch durch die Metrik auf den reellen Zahlen erzeugt, wobei diese vollständig ist, da in einem kompakten Raum alle die Topologie induzierenden Metriken vollständig sind.

Zur Universalität

Der Baire-Raum hat die besondere Eigenschaft, dass jeder polnische Raum stetiges Bild dieses Raumes ist. Diese Eigenschaft besitzt der Cantor-Raum nicht, schließlich ist er kompakt, weshalb nur kompakte Räume stetiges Bild seiner sein können. Jedoch gilt, dass jeder kompakte polnische Raum stetiges Bild des Cantor-Raums ist (dies sind gerade die kompakten Hausdorffräume, die das zweite Abzählbarkeitsaxiom erfüllen, diese sind nach dem Metrisierbarkeitssatz von Urysohn metrisierbar und, da sie kompakt sind, bezüglich jeder Metrik vollständig; ebenso sind dies genau die kompakten metrisierbaren Räume). Zum Beweis: Sei ein kompakter metrisierbarer Raum. Konstruiere nun einen Baum von offenen Teilmengen, also für jedes Wort eine abgeschlossene Menge mit natürlichen Zahlen mit den folgenden Eigenschaften:

  • für
  • .

Hierzu wähle man für jeden Punkt in abgeschlossene Kugeln, die hinreichend klein sind, um die dritte Bedingung erfüllen zu können (etwa mit einem Radius ). Ihre offenen Kerne bilden eine offene Überdeckung von , das als abgeschlossene Teilmenge eines Kompaktums kompakt ist. Somit existiert eine endliche Teilüberdeckung, deren Kardinalität heiße, die jeweiligen Abschlüsse lassen sich nun als für auswählen, die restlichen werden leer. Sei nun der Raum der Folgen über den natürlichen Zahlen, für die für alle Indizes . ist stetiges Bild des Cantor-Raums (die obige Konstruktion eines Homöomorphismus für Folgen über einer anderen endlichen Menge entspricht konstanten , diese lässt sich entsprechend zu einer stetigen Abbildung von nach verallgemeinern). Die Funktion mit ist nach dem Intervallschachtelungsprinzip eindeutig definiert und surjektiv. Zudem ist es stetig, da Konvergenz von Folgen unter dieser Abbildung erhalten bleibt. Dies liefert also die gewünschte Abbildung.

Im Falle eines Raumes, der zusätzlich perfekt und total unzusammenhängend ist, lassen sich die disjunkt und perfekt und alle wählen, wodurch sich dann sogar ein Homöomorphismus ergibt.

Auf ähnliche Weise ergibt sich, d​ass jeder perfekte polnische Raum d​en Cantor-Raum enthält, woraus m​it dem Satz v​on Cantor-Bendixson folgt, d​ass jeder überabzählbare polnische Raum d​ie Kardinalität d​es Kontinuums hat.[6] Auch enthält j​eder vollständig metrisierbare, perfekte Raum d​en Cantor-Raum.[7]

Boolesche Algebra

Nach dem Darstellungssatz für Boolesche Algebren ist jede boolesche Algebra isomorph zu der booleschen Algebra der offenen und abgeschlossenen Mengen eines Stone-Raums (total unzusammenhängender, kompakter Hausdorffraum). Die offenen und abgeschlossenen Mengen des Cantor-Raums sind gerade die, die sich als endliche Vereinigung von Mengen aller Folgen mit einem festen gemeinsamen Präfix ( mit ) schreiben lassen, denn: Das Komplement einer solchen Menge ist offenbar wieder eine offene Menge, und da besagte Mengen mit gemeinsamem Präfix eine Basis der Topologie bilden, müssen alle weiteren offenen Mengen nur als unendliche Vereinigung solcher Mengen darstellbar sein, deren Komplement dann nicht offen ist, da kein solches Basiselement enthalten sein kann. Somit sind die angegebenen tatsächlich alle offenen und abgeschlossenen Mengen. Diese boolesche Algebra ist also abzählbar und besitzt keine Atome, d. h. minimale Nicht-Nullelemente, denn jede nichtleere offene und abgeschlossene Menge zerfällt wiederum in zwei solche Mengen. Sei umgekehrt ein perfekter Stone-Raum mit abzählbar vielen offenen und gleichzeitig abgeschlossenen Mengen gegeben. Da ein Stone-Raum stets nulldimensional ist, bilden diese Mengen eine Basis, die somit abzählbar ist. Es ergibt sich aus obiger Charakterisierung, dass der Raum homöomorph zum Cantor-Raum ist. Nun folgt aus dem Darstellungssatz für Boolesche Algebren, dass je zwei abzählbar unendliche boolesche Algebren ohne Atome isomorph sind, denn ihr zugehöriger Stone-Raum ist gerade stets der Cantor-Raum (wäre der zugehörige Stone-Raum nicht perfekt, so besäße die boolesche Algebra Atome).

Gruppenstruktur

Mittels der komponentenweisen Addition im wird der Cantor-Raum auch zu einer kompakten, abelsch topologischen Gruppe (Produkte topologischer Gruppen sind wieder topologische Gruppen), genannt Cantor-Gruppe. Diese wird auch seitens der harmonischen Analyse betrachtet, die Walsh-Funktionen sind dabei Charaktere dieser Gruppe.[8]

Einzelnachweise

  1. David Marker: Descriptive Set Theory. 2002, (Lecture notes; PDF; 643 kB).
  2. Paul Alexandroff, Paul Urysohn: Mémoire sur les espaces topologiques compacts (= Verhandelingen der Koninklijke Akademie van Wetenschappen, Afdeeling Natuurkunde. Sectie 1: Ingenieurswetenschappen, Kristallographie, Natuurkunde, Scheikunde, Sterrekunde, Weerkunde en Wiskunde. 14, 1, ZDB-ID 134819-x). Uitgave van de koninklijke Akademie van Wetenschappen, Amsterdam 1929.
  3. Stephen Willard: General Topology. Addison-Wesley, Reading MA u. a. 1970, S. 217, 315.
  4. Eric W. Weisstein: Cantor Set. In: MathWorld (englisch).
  5. Stephen Willard: General Topology. Addison-Wesley, Reading MA u. a. 1970, S. 216.
  6. Alexander S. Kechris: Classical Descriptive Set Theory (= Graduate Texts in Mathematics. Bd. 156). Springer, New York NY u. a. 1995, ISBN 3-540-94374-9, 6.2–6.5.
  7. Nicolas Bourbaki: Élements de mathématique – Topologie générale. Kapitel ⅠⅩ, S. 114.
  8. Radomir S. Stanković, Jaakko Astola: Remarks on the Development and Recent Results in the Theory of Gibbs Derivatives. In: University of Nis. Facta Universitatis. Series Electronics and Energetics. Bd. 21, Nr. 3, 2008, S. 349–364, doi:10.2298/FUEE0803349S.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.