Anosov-Fluss
In der Mathematik sind Anosov-Flüsse, benannt nach Dmitri Wiktorowitsch Anossow, ein gut verstandenes Beispiel chaotischer Dynamik. Sie zeigen einerseits alle typischen Effekte chaotischen Verhaltens, sind andererseits aber einer mathematischen Behandlung gut zugänglich.
Definition
Ein Fluss auf einer Riemannschen Mannigfaltigkeit heißt Anosov-Fluss, wenn es eine stetige, -invariante Zerlegung
des Tangentialbündels gibt, so dass tangential zur Flussrichtung ist und bzw. durch gleichmäßig kontrahiert bzw. expandiert werden, d. h., es gibt mit
- .
Die Unterbündel und heißen stabiles und instabiles Bündel, die direkten Summen und heißen schwach stabiles bzw. schwach instabiles Bündel.
Differenzierbarkeit der Distributionen
Im Allgemeinen sind die Distributionen und nur stetig und nicht notwendig differenzierbar. Benoist-Foulon-Labourie haben bewiesen, dass das stabile und instabile Bündel eines Anosov-Flusses auf einer kompakten Mannigfaltigkeit negativer Schnittkrümmung nur dann -Bündel sind, wenn es sich (bis auf -Reparametrisierung) um den geodätischen Fluss eines lokal symmetrischen Raumes handelt.[1]
Integralmannigfaltigkeiten
Die Unterbündel und sind integrierbar[2], ihre Integralmannigfaltigkeiten heißen schwach stabile bzw. schwach instabile Mannigfaltigkeit. Die schwach stabilen bzw. schwach instabilen Mannigfaltigkeiten eines Anosov-Flusses bilden jeweils eine straffe Blätterung.
Analog werden die Integralmannigfaltigkeiten von bzw. als stabile bzw. instabile Mannigfaltigkeit bezeichnet.
Beispiele
- Der geodätische Fluss (auf dem Einheitstangentialbündel) einer Riemannschen Mannigfaltigkeit negativer Schnittkrümmung ist ein Anosov-Fluss, seine stabilen und instabilen Mannigfaltigkeit sind Einheitstangentialbündel von Horosphären.[3]
- Der Suspensionsfluss eines Anosov-Diffeomorphismus, zum Beispiel eines hyperbolischen Automorphismus des Torus, ist ein Anosov-Fluss.
Eigenschaften
- Periodische Orbiten liegen dicht.[4]
- Ein maß-erhaltender Anosov-Fluss ist ergodisch.
Literatur
Stephen Smale: Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 1967 747–817 pdf
Belege
- Yves Benoist, Patrick Foulon, François Labourie: Flots d'Anosov à distributions stable et instable différentiables. J. Amer. Math. Soc. 5 (1992), no. 1, 33–74.pdf (Memento des Originals vom 23. Oktober 2005 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
- Joseph Plante: Anosov flows. Amer. J. Math. 94 (1972), 729–754. pdf
- Gustav Hedlund: The dynamics of geodesic flows. Bull. Amer. Math. Soc. 45 (1939), no. 4, 241–260. pdf
- Dmitri Anosov: Geodesic flows on closed Riemann manifolds with negative curvature. Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder American Mathematical Society, Providence, R.I. 196