Regulärer Raum

In d​er Topologie u​nd verwandten Gebieten d​er Mathematik s​ind reguläre Räume spezielle topologische Räume, i​n denen j​ede abgeschlossene Teilmenge A u​nd jeder n​icht in A liegende Punkt x d​urch Umgebungen getrennt sind.

Ein T3-Raum i​st ein regulärer Raum, d​er außerdem e​in Hausdorff-Raum ist.

Definition

Sei ein topologischer Raum. Zwei Teilmengen und von heißen durch Umgebungen getrennt, falls disjunkte offene Mengen und mit und existieren.

heißt regulärer Raum, falls jede abgeschlossene Menge und jeder Punkt durch Umgebungen von sowie von getrennt sind, also mit .

Hinweis: In d​er Literatur i​st die Bezeichnung regulärer Raum u​nd T3-Raum n​icht eindeutig. Gelegentlich s​ind die Definitionen gegenüber d​er hier präsentierten Variante vertauscht.

Beispiele

Permanenz-Eigenschaften

  • Unterräume regulärer Räume sind wieder regulär.
  • Beliebige Produkte regulärer Räume sind wieder regulär.

Beziehungen zu anderen Trennungsaxiomen

  • Jeder reguläre Raum ist symmetrisch.[3]
  • Jeder reguläre Raum, der T0 erfüllt, erfüllt auch T2 und somit T1: Betrachte zwei Punkte und . Ohne Beschränkung der Allgemeinheit existiere eine offene Umgebung von , die nicht enthält (andernfalls vertausche die beiden Punkte). Ihr Komplement ist abgeschlossen und enthält , aber nicht und kann daher von durch disjunkte Umgebungen getrennt werden, die somit auch und trennen.
  • Jeder reguläre Raum ist präregulär.
  • Jeder reguläre Raum ist außerdem halbregulär. Die regulär offenen Mengen bilden eine Basis eines regulären Raums. Diese Eigenschaft ist allerdings schwächer als die der Regularität. Das heißt, es gibt topologische Räume, deren regulär offene Mengen eine Basis bilden, aber die nicht regulär sind.
  • Ein topologischer Raum ist genau dann ein regulärer Raum, wenn der Kolmogoroff-Quotient KQ('X') das Trennungsaxiom T3 erfüllt.
  • Jeder vollständig reguläre Raum ist auch regulär, die Umkehrung gilt nicht, wie das Beispiel der Mysior-Ebene zeigt.
  • Erfüllt ein regulärer Raum das zweite Abzählbarkeitsaxiom, so ist er bereits normal und nach dem Metrisierbarkeitssatz von Urysohn pseudometrisierbar.
  • Jeder symmetrische normale Raum ist regulär.[4]

Äquivalente Charakterisierung

Ein topologischer Raum ist genau dann regulär, wenn jeder seiner Punkte eine Umgebungsbasis aus abgeschlossenen Mengen besitzt. Umgebungsbasis eines Punktes zu sein, bedeutet, dass man zu jeder Umgebung eine Umgebung mit und findet.

Der Sachverhalt lässt sich auch recht leicht allein mit den topologischen Grundbegriffen (Offenheit und Abschluss) ausdrücken, ohne dabei Umgebungen und Umgebungsbasen einführen zu müssen: Für jedes , offen, findet man ein offenes mit .

Literatur

  • Boto von Querenburg: Mengentheoretische Topologie (= Springer-Lehrbuch). 3., neu bearbeitete und erweiterte Auflage. Springer, Berlin u. a. 2001, ISBN 3-540-67790-9.

Einzelnachweise

  1. Boto von Querenburg: Mengentheoretische Topologie. 3., neu bearbeitete und erweiterte Auflage. Springer, Berlin u. a. 2001, ISBN 3-540-67790-9, S. 84 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Lynn Arthur Steen: Counterexamples in Topology. Courier Corporation, 1995, ISBN 978-0-486-68735-3, S. 100 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. René Bartsch: Allgemeine Topologie. Walter de Gruyter GmbH & Co KG, 2015, ISBN 978-3-110-40618-4, S. 118.
  4. René Bartsch: Allgemeine Topologie. Walter de Gruyter GmbH & Co KG, 2015, ISBN 978-3-110-40618-4, S. 122.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.