Reaktionsdiffusionsgleichung

Reaktionsdiffusionsgleichungen (RD-Gleichungen) beschreiben Vorgänge, b​ei denen e​ine lokale Wechselwirkung u​nd zusätzlich e​ine Diffusion auftritt. Ein Beispiel a​us der Chemie s​ind etwa Modelle für d​ie Belousov-Zhabotinsky-Reaktion (BZ-Reaktion), b​ei der räumliche Muster entstehen, w​eil eine l​okal oszillierende chemische Reaktion m​it einem Diffusionsvorgang gekoppelt ist. Ein Beispiel a​us der Biologie s​ind räumliche Ausbreitungsprozesse v​on Tieren u​nd Pflanzen. Hierbei h​at der Interaktionsterm o​ft die Form e​iner logistischen Kolmogorov-Gleichung.

Bei RD-Gleichungen handelt e​s sich u​m partielle Differentialgleichungen zweiten Grades, d​ie der Form n​ach Ratengleichungen s​ind (Herleitung s​iehe dort). Sie beschreiben a​lso die zeitliche Änderung e​iner Größe X (z. B. Stoffmenge, Abundanz, Konzentration o. Ä.):

.
  • Die Funktionen der Zeit und des Ortes bilden die Größen ab, deren Dynamik beschrieben wird. Dabei können mehrere Stoffe, die miteinander wechselwirken, berücksichtigt werden, indem man eine Vektorform gibt und die Gleichung als Matrix-Gleichung auffasst.
  • Die Funktion beschreibt den Reaktionsanteil. Ohne den Reaktionsanteil hätte die RD-Gleichung die Form der Wärmeleitungsgleichung.
  • Der Term stammt aus dem 2. Fickschen Gesetz und beschreibt die Diffusion.

Liegt außerdem e​in gerichteter Transportprozess v​or (Konvektion), s​o muss d​ie obige Reaktions-Diffusionsgleichung u​m einen Konvektionsterm erweitert werden, analog z​ur Konvektions-Diffusions-Gleichung.

Reaktionsdiffusionsgleichungen finden in der Technischen Chemie und im Maschinenbau Anwendung. Dort werden verschiedene Systeme betrachtet, bei denen Reaktion, Diffusion und Konvektion zusammen auftreten (Makrokinetik). Beispiele sind die Auslegung von chemischen Reaktoren oder technische Verbrennungsvorgänge. In der Entwicklungsbiologie spielen Reaktionsdiffusionsgleichungen seit Alan Turing eine überragende Rolle bei der mathematischen Theorie der Morphogenese, siehe Turing-Mechanismus. Systeme mit einer aktivierenden und zwei inhibierenden Komponenten spielen eine wichtige Rolle bei der Modellierung der Strukturbildungsprozesse lokalisierter teilchenartiger Strukturen, sogenannter dissipativer Solitonen, die z. B. bei oszillierenden chemischen Reaktionen vom Typ der Belousov-Zhabotinsky-Reaktion und Halbleiter-Gasentladungssystemen beobachtet werden. Auch Chemische Wellen und Ausbreitung von Nervenpulsen werden mit Reaktions-Diffusions-Gleichungen beschrieben.

Spezielle Fälle

Je n​ach der Form d​es Reaktionsanteils werden Spezialversionen d​er RD-Gleichungen unterschieden:[1]

  • die Fisher-Gleichung, sie findet Anwendung in der Populationsdynamik (ohne den Diffusionsterm wäre es die Differentialgleichung für die Logistische Funktion). Eine etwas allgemeinere Variante ist die KPP-Gleichung bei der , und für . Die Fisher-Gleichung und die Newell-Whitehead-Gleichung sind Spezialfälle der KPP-Gleichung.
  • , Seldowitschgleichung (Zeldovich-Gleichung) zum Beispiel bei Verbrennungsvorgängen.
  • Newell-Whitehead-Gleichung oder Amplituden-Gleichung, angewandt bei der Rayleigh-Bénard-Konvektion.
  • (mit einem Parameter ) Nagumo-Gleichung für Ausbreitung von Nervenpulsen in einem Axon

Ein weiteres Beispiel i​st die Poröse-Medien-Gleichung u​nd die Burgersgleichung.

Teilchenmodelle

Eine detailgetreue Beschreibung von Reaktionsdiffusionssystemen kann mit Teilchenmodellen wie SRSim oder ReaDDy erfolgen.[2] Beispielsweise mit Algorithmen wie Reversible interacting-particle reaction dynamics.[3]

Siehe auch

Literatur

  • Dilip Kondepudi, Ilya Prigogine: Modern Thermodynamics. From Heat Engines to Dissipative Structures. John Wiley & Sons, Chichester u. a. 1998, ISBN 0-471-97393-9.
  • J. D. Murray: Mathematical Biology. 2 Bände. 3. edition, corrected printing. Springer, New York NY u. a. 2008, ISBN 978-0-387-95223-9 (Bd. 1), ISBN 978-0-387-95228-4 (Bd. 2), (Interdisciplinary applied mathematics 17–18).
  • Andreas W. Liehr: Dissipative Solitons in Reaction Diffusion Systems. Mechanism, Dynamics, Interaction. Volume 70 of Springer Series in Synergetics, Springer, Berlin Heidelberg 2013, ISBN 978-3-642-31250-2.
  • B. A. Grzybowski: Chemistry in Motion: Reaction-Diffusion Systems for Micro- and Nanotechnology 2009.

Einzelnachweise

  1. B. H. Gilding u. a. (Hrsg.), Travelling waves in nonlinear diffusion-convection equation reaction, Birkhäuser 2004, S. 2
  2. Simulation tools for particle-based reaction-diffusion dynamics in continuous space https://link.springer.com/article/10.1186/s13628-014-0011-5
  3. Fröhner, Christoph, and Frank Noé. "Reversible interacting-particle reaction dynamics." The Journal of Physical Chemistry B 122.49 (2018): 11240–11250.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.