Huber-Paar

Ein Huber-Paar (auch affinoider Ring) i​st ein spezielles Paar topologischer Ringe. Huber-Paare s​ind der Grundbaustein d​er von Roland Huber eingeführten adischen Räume, s​o wie kommutative Ringe d​ie Grundbausteine v​on Schemata sind.

Definition

Ein Huber-Paar besteht aus einem Huber-Ring und einem offenen und in ganzabgeschlossenen Teilring , der im Ring potenz-beschränkter Elemente enthalten ist.[1]

Ein Huber-Paar heißt Tate (bzw. vollständig), falls ein Tate-Ring (bzw. vollständiger Ring) ist.

Beispiele

  • mit der -adischen Topologie ist ein vollständiges Tate Huber-Paar. Es ist eine topologisch nilpotente Einheit, denn in der -adischen Topologie.
  • Sei ein endlicher Körper. Das Paar mit der -adischen Topologie ist ein vollständiges Tate Huber-Paar. Es ist ist eine topologisch nilpotente Einheit, denn in der -adischen Topologie.
  • Ist allgemeiner ein lokaler Körper mit Ganzheitsring und uniformisierendem Element , so ist ein vollständiges Tate Huber-Paar mit Definitionspaar .

Einzelnachweise

  1. Sophie Morel: Adic spaces. (PDF; 1,0 MB) 22. April 2019, abgerufen am 30. Dezember 2020, Def. III.1.7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.