Poisson-Gleichung

Die Poisson-Gleichung, benannt n​ach dem französischen Mathematiker u​nd Physiker Siméon Denis Poisson, i​st eine elliptische partielle Differentialgleichung zweiter Ordnung, d​ie als Teil v​on Randwertproblemen i​n weiten Teilen d​er Physik Anwendung findet.

Mathematische Formulierung

Die Poisson-Gleichung lautet allgemein

Dabei bezeichnet

  • den Laplace-Operator
  • die gesuchte Lösung
  • eine Funktion. Ist , so wird die Gleichung zur Laplace-Gleichung.

Um d​ie Poisson-Gleichung z​u lösen, müssen n​och weitere Informationen gegeben sein, z. B. i​n Form e​iner Dirichlet-Randbedingung:

mit offen und beschränkt.

In diesem Fall konstruiert man eine Lösung mithilfe der Fundamentallösung der Laplace-Gleichung:

Dabei bezeichnet den Flächeninhalt der Einheitssphäre im -dimensionalen euklidischen Raum.

Durch die Faltung erhält man eine Lösung der Poisson-Gleichung.

Um a​uch die Randwertbedingung z​u erfüllen, k​ann man d​ie greensche Funktion verwenden

ist dabei eine Korrekturfunktion, die

erfüllt. Sie ist im Allgemeinen von abhängig und nur für einfache Gebiete leicht zu finden.

Kennt man , so ist eine Lösung des Randwertproblems von oben gegeben durch

wobei das Oberflächenmaß auf bezeichne.

Die Lösung k​ann man a​uch mithilfe d​es Perronverfahrens o​der eines Variationsansatzes finden.

Anwendungen in der Physik

Der Poisson-Gleichung genügen beispielsweise das elektrostatische Potential und das Gravitationspotential, jeweils mit Formelzeichen . Dabei ist die Funktion proportional zur elektrischen Ladungsdichte bzw. zur Massendichte

Ist überall bekannt, so ist die allgemeine Lösung der Poisson-Gleichung, die für große Abstände gegen Null geht, das Integral[1]

.

In Worten: jede Ladung am Ort im kleinen Gebiet der Größe trägt additiv bei zum Potential am Ort mit ihrem elektrostatischen oder Gravitationspotential:

Elektrostatik

Da das elektrostatische Feld ein konservatives Feld ist, kann es über den Gradienten eines Potentials ausgedrückt werden:

Mit Anwendung d​er Divergenz ergibt sich

mit dem Laplace-Operator .

Gemäß d​er ersten Maxwellgleichung g​ilt jedoch auch

mit

  • der Ladungsdichte
  • der Permittivität .

Damit f​olgt für d​ie Poisson-Gleichung d​es elektrischen Feldes

Der Spezialfall für jeden Ort im betrachteten Gebiet wird als Laplace-Gleichung der Elektrostatik bezeichnet.

Elektrodynamik stationärer Ströme

Als Beispiel wird hier der Emitter einer Silizium-Solarzelle betrachtet, der in guter Näherung als rein zweidimensional beschrieben werden kann. Der Emitter befinde sich in der x-y-Ebene, die z-Achse zeige in die Basis hinein. Die laterale Flächenstromdichte im Emitter hängt von der am Emitter auftretenden z-Komponente der (Volumen-)Stromdichte der Basis ab, was durch die Kontinuitätsgleichung in der Form

beschrieben werden kann (mit dem zweidimensionalen Nabla-Operator ). Die Flächenstromdichte hängt über das lokale ohmsche Gesetz mit dem lateralen elektrischen Feld im Emitter zusammen: ; hier ist der als homogen angenommene spezifische Flächenwiderstand des Emitters. Schreibt man (wie im Abschnitt zur Elektrostatik diskutiert) das elektrische Feld als Gradient des elektrischen Potentials, , so erhält man für die Potentialverteilung im Emitter eine Poisson-Gleichung in der Form

Gravitation

Ebenso w​ie das elektrostatische Feld

,

ist a​uch das Gravitationsfeld g e​in konservatives Feld:

.

Dabei ist

  • G die Gravitationskonstante
  • die Massendichte.


Da nur die Ladungen durch Massen und durch ersetzt werden, gilt analog zur ersten Maxwellgleichung

.

Damit ergibt s​ich die Poisson-Gleichung d​er Gravitation zu

.

Literatur

  • Richard Courant, David Hilbert: Methoden der mathematischen Physik. Band 1. Springer, Berlin u. a. 1924 (= Die Grundlehren der mathematischen Wissenschaften, 12). 4. Auflage, ebenda 1993, ISBN 3-540-56796-8.
  • Lawrence C. Evans: Partial Differential Equations. American Mathematical Society, Providence RI 1998, ISBN 0-8218-0772-2 (= Graduate studies in mathematics 19).

Einzelnachweise

  1. Wolfgang Nolting: Grundkurs theoretische Physik. [Online-ausg. der] 8. [gedr.] Auflage. 3. Elektrodynamik. Springer, Berlin, ISBN 978-3-540-71252-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.