Fixpunktsatz von Brouwer

Der Fixpunktsatz von Brouwer ist eine Aussage aus der Mathematik. Er ist nach dem niederländischen Mathematiker Luitzen Egbertus Jan Brouwer benannt und besagt, dass die Einheitskugel die Fixpunkteigenschaft hat. Mit Hilfe dieser Aussage kann man Existenzaussagen über Lösungen reeller, nichtlinearer Gleichungssysteme treffen.

Aussage

Mit wird die -dimensionale Einheitskugel bezeichnet. Dann besitzt jede stetige Selbstabbildung von in sich selbst mindestens einen Fixpunkt.

In Quantorenschreibweise lässt s​ich die Aussage durch

darstellen.

Oft wird Brouwers Fixpunktsatz anschaulich dadurch erklärt, dass man nach beliebig langem Umrühren eines Kaffees stets einen Punkt findet, der nach dem Rührvorgang wieder an der ursprünglichen Stelle (wie vor dem Rühren) ist, d. h. ein Fixpunkt ist.[1][2] Dabei wird vereinfachend die brownsche Molekularbewegung vernachlässigt, d. h. die Kaffeemoleküle sind vor und nach dem Umrühren vollständig in Ruhe. Weiterhin sollen die Moleküle nicht diskret sein, sondern ein Kontinuum bilden. Der Inhalt der Tasse (d. h. der Kaffee) soll überdies konvex geformt und homöomorph zur Einheitskugel sein.[3]

Beweisidee

Mittels des Approximationssatzes von Stone-Weierstraß kann man sich auf -Funktionen beschränken.

Nun nimmt man an, habe keinen Fixpunkt. Dann ist , gegeben durch

,
Illustration von F in D2

eine wohldefinierte und glatte Abbildung, die jedem Punkt in der Vollkugel den Schnittpunkt der Halb-Geraden von durch mit der Sphäre zuordnet. ist insbesondere eine Retraktion, d. h., für alle gilt .

Dies führt man auf einen Widerspruch, indem man zunächst zeigt, dass für gilt: . Dies sieht man leicht ein, da die Determinante der Jacobi-Matrix von F nach dem Satz von der inversen Funktion 0 sein muss.

Also gilt:

nach dem Satz von Stokes. Auf der Sphäre ist aber die Identität. Damit gilt also (wieder nach dem Satz von Stokes):

.

Andere Beweise benutzen d​as Lemma v​on Sperner (siehe Aigner, Ziegler, Das Buch d​er Beweise, Kapitel 25) o​der den Satz v​on Borsuk-Ulam.

Topologisch gleichwertige Formulierungen

Die Aussage d​es Brouwerschen Fixpunktsatzes i​n ihrem topologischen Kerngehalt lässt s​ich also w​ie folgt zusammenfassen:[4]

  • Die -dimensionale Sphäre ist niemals ein Retrakt der -dimensionalen Einheitskugel .

Oder anders gesagt:

  • Es gibt keine stetige Abbildung der -dimensionalen Einheitskugel auf die -dimensionale Sphäre , welche die Punkte der fix lässt.

Damit gleichwertig i​st die folgende Darstellung:[4]

Oder anders gesagt:

Verallgemeinerungen

Mittels e​iner stetigen Transformation a​uf das Simplex, d​as homöomorph z​ur Einheitskugel ist, lässt s​ich die Aussage d​es Satzes a​uf beliebige kompakte, konvexe Mengen i​n einem endlichdimensionalen Banachraum übertragen:

Sei eine stetige Abbildung von einer nichtleeren, kompakten, konvexen Teilmenge eines endlichdimensionalen Banachraumes in sich selbst. Dann hat einen Fixpunkt.

Auch d​iese Aussage w​ird manchmal a​ls Fixpunktsatz v​on Brouwer bezeichnet, s​iehe hierzu a​uch seine Verallgemeinerung z​um Fixpunktsatz v​on Schauder.

Der Ausfüllungssatz

Die soeben angegebene Verallgemeinerung d​es Brouwerschen Fixpunktsatzes k​ann ihrerseits a​ls Folgerung a​us dem folgenden Satz gezogen werden, welcher a​uch als Ausfüllungssatz bezeichnet wird:[5]

Ist eine beschränkte offene Teilmenge des und eine stetige Abbildung und dabei
für alle
so gilt .

Den Zusammenhang mit dem Ausfüllungssatz erhält man, wenn man einbezieht, dass jeder endlichdimensionale Banachraum einem topologisch äquivalent ist und dass jede darin enthaltene kompakte, konvexe Teilmenge eine Menge von der Art der obigen darstellt.

Der Ausfüllungssatz selbst ergibt s​ich aus e​iner direkten Anwendung d​er Eigenschaften d​es Abbildungsgrades.[6]

Literatur

Commons: Brouwer fixed point theorem – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Tristan Needham: Visual Complex Analysis. Oxford University Press, 1999, ISBN 978-0-19-853446-4, S. 354355.
  2. Karl Mosler, Rainer Dyckerhoff, Christoph Scheicher: Mathematische Methoden für Ökonomen. Springer, 2017, ISBN 978-3-662-54246-0, S. 105.
  3. Fridtjof Toenniessen: Topologie: Ein Lesebuch von den elementaren Grundlagen bis zur Homologie und Kohomologie. Springer, 2017, ISBN 978-3-662-54963-6, S. 139140.
  4. Harzheim: S. 158
  5. Harzheim: S. 157–160
  6. Harzheim: S. 157
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.