Diskreter Bewertungsring

Im mathematischen Teilgebiet d​er kommutativen Algebra s​ind diskrete Bewertungsringe spezielle lokale Ringe m​it besonders g​uten Eigenschaften.

Definition

Ein diskreter Bewertungsring i​st ein lokaler Hauptidealring, d​er kein Körper ist.

Ein Erzeuger d​es maximalen Ideals heißt uniformisierendes Element o​der kurz Uniformisierendes. Man schreibt a​uch kurz DVR (für discrete valuation ring) o​der DBR.

Eigenschaften

  • Ein diskreter Bewertungsring ist ein Dedekindring, insbesondere ein regulärer lokaler Integritätsring.
  • Das Spektrum eines diskreten Bewertungsringes besteht aus genau zwei Punkten:
    • Einem abgeschlossenen Punkt, dem speziellen Punkt, zugehörig zum maximalen Ideal (wenn das uniformisierende Element ist)
    • und einem nicht abgeschlossenen (aber offenen) Punkt, dem generischen Punkt .
  • Für einen diskreten Bewertungsring wird durch eine diskrete Bewertung auf dem Quotientenkörper definiert (wenn für in ). Diese Bewertung hat als Bewertungsring.
  • Ordnet man einem diskret bewerteten Körper seinen Bewertungsring zu und wendet darauf obige Konstruktion an, so erhält man einen diskret bewerteten Körper, der isomorph zu ist. Mit anderen Worten: Diese Konstruktionen induzieren eine Äquivalenz von Kategorien zwischen diskret bewerteten Körpern und diskreten Bewertungsringen.

Beispiele

  • Der Ring der ganzen p-adischen Zahlen für jede Primzahl . ist dicht in .
  • Der Ring der rationalen Zahlen, die p-adisch ganz sind, für eine Primzahl
             .
    Es ist und ist dicht in .
  • Der Ring der formalen Potenzreihen in einer Unbestimmten über einem Körper .
  • Der Ring der konvergenten Potenzreihen

Literatur

  • M.F. Atiyah und I.G. MacDonald: Introduction to Commutative Algebra. Addison-Wesley Series in Mathematics, 1969, Chapter 9, ISBN 0-201-00361-9
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.