Clebsch-Gordan-Koeffizient

Die Clebsch-Gordan-Koeffizienten finden i​hre Verwendung i​n der Kopplung quantenmechanischer Drehimpulse. Es handelt s​ich dabei u​m Entwicklungskoeffizienten, m​it denen m​an aus d​er Basis d​er Einzeldrehimpulse i​n die Basis d​es Gesamtdrehimpulses übergeht. Sie werden z​ur Berechnung d​er Spin-Bahn-Kopplung s​owie im Isospin-Formalismus verwendet.

Sie wurden n​ach Alfred Clebsch (1833–1872) u​nd Paul Gordan (1837–1912) benannt. Statt Clebsch-Gordan-Koeffizienten k​ann man a​uch nach Eugene Wigner d​ie damit verwandten 3j-Symbole verwenden.

Drehimpulskopplung

Man geht von zwei Drehimpulsen und aus, die jeweils die Quantenzahlen und (z-Komponente), bzw. und besitzen. Dabei nehmen und folgende Werte an: und , und die Drehimpulse vertauschen untereinander: (s. Quantenmechanischer Kommutator). Das bedeutet, dass man die einzelnen Drehimpulse unabhängig voneinander scharf messen kann. Jeder dieser Drehimpulse hat seinen eigenen Eigenraum, der durch die Eigenvektoren bzw. aufgespannt wird. In der Basis dieser Eigenvektoren hat das Quadrat von und eine Komponente dieses Operators eine diagonale Gestalt. Das Gleiche gilt in analoger Weise auch für .

Die einzelnen Drehimpulse und koppeln nun zu einem Gesamtdrehimpuls . D.h. die einzelnen Komponenten addieren sich vektoriell. Die Eigenzustände des Gesamtdrehimpulses besitzen die Quantenzahlen und . Sie können die folgenden Werte annehmen:

und .

Da der Gesamtdrehimpuls aus beiden Drehimpulsen und besteht, können die Zustände des Gesamtdrehimpulses im Produktraum der einzelnen Eigenzustände dargestellt werden:

wobei das Tensorprodukt bezeichnet.

Allerdings sind diese Zustände im Allgemeinen keine Eigenvektoren des Gesamtdrehimpulses , so dass er in dieser Basis keine Diagonalgestalt besitzt.

Eigenbasis des Gesamtdrehimpulsoperators

Die Eigenvektoren von werden durch die Quantenzahlen , , und eindeutig festgelegt. Bezüglich der neuen Basis aus Eigenvektoren hat der Gesamtdrehimpuls wieder eine einfache Diagonalgestalt. Es gilt:

Die Clebsch-Gordan-Koeffizienten geben nun den Übergang der Produktbasis in die Eigenbasis an (unitäre Transformation):

Dabei sind die Clebsch-Gordan-Koeffizienten.

Eigenschaften der Clebsch-Gordan-Koeffizienten

  • Die Clebsch-Gordan-Koeffizienten sind gleich Null, wenn eine der beiden Bedingungen oder nicht erfüllt ist:
  („Auswahlregeln“).
  • Die Clebsch-Gordan-Koeffizienten sind konventionsgemäß reell:
  • Folgender Clebsch-Gordan-Koeffizient zu ist konventionsgemäß positiv:
  • Der Clebsch-Gordan-Koeffizient zu ist betragsmäßig gleich dem Clebsch-Gordan-Koeffizient zu gemäß
  • Die Clebsch-Gordan-Koeffizienten erfüllen die Orthogonalitätsrelation
  • Die Clebsch-Gordan-Koeffizienten erfüllen die Orthogonalitätsrelation

Ermittlung der Clebsch-Gordan-Koeffizienten

Der Eigenzustand mit und lässt sich sofort in der Produktbasis angeben (nur ein Clebsch-Gordan-Koeffizient gleich 1, alle anderen Null):

Durch Anwenden des Absteigeoperators erhält man die Zustände bis , also zu alle Zustände mit .

Den Zustand erhält man aus der Forderung nach Orthogonalität zu und der Konvention, dass der Clebsch-Gordan-Koeffizient für positiv ist.

Mit dem Absteigeoperator können zu wieder alle Zustände mit erzeugt werden. Dieses Verfahren wird nun iterativ wiederholt bis .

SU(N)-Clebsch-Gordan-Koeffizienten

Die Kommutatorrelationen d​er Drehimpulsoperatoren zeigen, d​ass jeder s​o definierte Drehimpuls e​ine Algebra bildet, d​ie im mathematischen Sinne isomorph z​u der d​er Lie-Algebra d​er speziellen unitären Gruppe SU(2) ist.

In d​er Quantenmechanik lassen s​ich jedoch n​icht nur Zustände koppeln, d​ie Drehimpulsquantenzahlen bzw. su(2)-Quantenzahlen tragen, sondern a​uch Zustände m​it su(N)-Quantenzahlen. Dies passiert z. B. i​n der Quantenchromodynamik. Um d​ie dabei auftretenden Clebsch-Gordan-Koeffizienten z​u berechnen, s​ind ebenfalls Algorithmen bekannt[1].

Verallgemeinerung: Ausreduzierung einer Produktdarstellung

Man kann die Theorie der Clebsch-Gordan-Koeffizienten als Spezialfall aus der Darstellungstheorie der Gruppen auffassen.[2] Und zwar gilt, dass die von zwei (oder mehr) Produkten der Funktionen aufgespannte „Produktdarstellung“ i. a. reduzibel ist. Sie kann daher nach den irreduziblen Darstellungen „ausreduziert“ werden, wobei die ganzzahligen „Vielfachheiten“, mit denen diese im allgemeinen Fall vorkommen können, bei der Drehgruppe nur den Wert 1 annehmen.

Im vorliegenden Fall sind jedenfalls die genannten Produkte von der Form und die zugehörige irreduzible Darstellung wird durch Funktionen der Form aufgespannt.

Also abstrakt, m​it den irreduziblen Darstellungen d​er Drehgruppe

wobei z. B. der Größe l entspricht und analog zu s ist.

Die b​ei dieser Ausreduzierung auftretenden komplexwertigen Entwicklungskoeffizienten s​ind die Clebsch-Gordan-Koeffizienten.

Ein einfaches Beispiel

Neben den oben behandelten Atomfunktionen ist das folgende Beispiel instruktiv, bei dem es um das einfachste Zwei-Spin-Problem geht: Es werden also zwei Teilchen mit dem Spin betrachtet. Das ergibt die vier Funktionen wobei sich der erste Faktor auf das eine, der zweite auf das andere Teilchen bezieht. Die angegebenen Zustände werden im Folgenden durch Pfeilsymbole veranschaulicht.

Ausreduktion dieses Produkts ergibt ebenfalls insgesamt vier „irreduzible“ Zustände. Diese sind ein sog. Singulett-Zustand mit ,

sowie drei sog. Triplett-Zustände mit , nämlich

und

Die Clebsch-Gordan-Koeffizienten entsprechen in diesem Fall den Werten bzw. , die bei dieser Darstellung auftreten.

Bei Abwesenheit magnetischer Felder h​aben die d​rei Triplettzustände e​in und dieselbe Energie.

Anwendungen

Welcher der beiden Zustände, Singulett oder Triplett, energetisch dominiert, hängt von Einzelheiten der Wechselwirkung ab: Wenn der dominierende Mechanismus die Anziehung der Elektronen durch den Kern ist, z. B. bei homöopolarer Bindung, dominiert der Singulett-Zustand und das resultierende Molekül bzw. der Festkörper sind unmagnetisch bzw. diamagnetisch. Falls dagegen die gegenseitige Coulomb'abstoßung der Elektronen dominiert, erhält man paramagnetische Moleküle bzw. ferromagnetische Festkörper.

Die im ersten Teil des Artikels implizit dominierende quantenmechanisch vertiefte Drehimpulsphysik („Drehimpulsgymnastik“) erhält man mit der Standardinterpretation, dass man erstens nicht zwei, sondern nur ein einziges Teilchen betrachtet und und setzt.[3] Dies ergibt vielfältige Anwendungen in Kern- und Teilchenphysik.

Literatur

  • Wachter, Hoeber: Repetitorium Theoretische Physik. Springer Verlag. ISBN 3-540-21457-7

Einzelnachweise

  1. A. Alex, M. Kalus, A. Huckleberry, and J. von Delft: A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients. In: J. Math. Phys. 82, Februar 2011, S. 023507. doi:10.1063/1.3521562. Abgerufen am 13. April 2011.
  2. Siehe alle Standardlehrbücher über Darstellungstheorie von Gruppen; speziell solche mit Hauptanwendungen in der Physik.
  3. A. Lindner: Grundkurs theoretische Physik, Wiesbaden, Vieweg & Teubner, 3. Auflage (2012), ISBN 978-3-8348-1895-9
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.