Chern-Simons-Funktional

Das Chern-Simons-Funktional i​st in Differentialgeometrie, Topologie u​nd mathematischer Physik v​on Bedeutung. In d​er Mathematik w​ird es z​ur Definition d​er Chern-Simons-Invariante v​on Zusammenhängen a​uf Prinzipalbündeln über 3-Mannigfaltigkeiten verwendet. Ursprünglich v​on Chern u​nd Simons i​n der Theorie d​er sekundären charakteristischen Klassen eingeführt, h​atte es mindestens z​wei unerwartete Anwendungen, nämlich z​um einen Wittens Einordnung i​n die Quantenfeldtheorie m​it einer physikalisch-geometrischen Interpretation d​es Jones-Polynoms (Topologische Quantenfeldtheorie)[1][2] u​nd zum anderen d​ie Interpretation d​er Chern-Simons-Invariante flacher Bündel a​ls komplexwertige Version d​es hyperbolischen Volumens.

Definition

Sei eine einfach zusammenhängende Lie-Gruppe und eine 3-dimensionale, geschlossene, orientierbare Mannigfaltigkeit. Unter diesen Voraussetzungen ist jedes -Prinzipalbündel trivialisierbar, hat also einen Schnitt .

Für e​inen Zusammenhang

wird s​ein Chern-Simons-Wirkungsfunktional definiert durch

.

Diese Definition hängt a priori von der Wahl eines Schnittes ab, für eine Eichtransformation

gilt aber

,

wobei die Maurer-Cartan-Form ist.

Man erhält also einen modulo wohldefinierten Wert

.

Eigenschaften

Sei eine geschlossene, orientierbare 3-Mannigfaltigkeit und . Wir bezeichnen mit die (unendlich-dimensionale) Mannigfaltigkeit aller Zusammenhänge auf -Prinzipalbündeln über .

Dann ist glatt und hat die folgenden Eigenschaften:

  • (Funktorialität)
Wenn eine Bündelabbildung über einem orientierungserhaltenden Diffeomorphismus ist, dann gilt
für jeden Zusammenhang .
  • (Additivität)
Wenn eine disjunkte Vereinigung ist, und ein Zusammenhang auf , dann gilt
.
  • (Erweiterung der Strukturgruppe)
Wenn eine Inklusion einfach zusammenhängender, kompakter Lie-Gruppen, ein Zusammenhang auf einem -Bündel und die Erweiterung von auf ein -Bündel ist, dann gilt
.

Flache Zusammenhänge

Es g​ilt

,

wobei die Krümmungsform des Zusammenhangs bezeichnet. Die kritischen Punkte des Chern-Simons-Funktionals sind also gerade die flachen Zusammenhänge. Insbesondere ist das Chern-Simons-Funktional konstant auf den Zusammenhangskomponenten des Modulraums flacher Zusammenhänge auf .

Satz von Yoshida

Es sei eine geschlossene, orientierbare hyperbolische 3-Mannigfaltigkeit und ihre Holonomiedarstellung. Dann gilt für das assoziierte flache Bündel

,

wobei die Riemannsche Chern-Simons-Invariante des Levi-Civita-Zusammenhangs bezeichnet.[3]

Das Bild der Fundamentalklasse unter der Darstellung definiert eine Homologieklasse

in d​er erweiterten Bloch-Gruppe u​nd der Rogers-Dilogarithmus

bildet auf ab. Das liefert eine explizite Formel für die Chern-Simons-Invariante und einen alternativen Beweis des Satzes von Yoshida.[4][5][6]

Algorithmus für flache Bündel

Es sei ein flaches Bündel über einer geschlossenen, orientierbaren 3-Mannigfaltigkeit mit Holonomie . Dann bildet der Rogers-Dilogarithmus auf ab, wobei den kanonischen Homomorphismus bezeichnet.[7] Der Wert von kann aus den ptolemäischen Koordinaten der Darstellung zu einer Triangulierung von berechnet werden. (Dieser Ansatz funktioniert auch für 3-Mannigfaltigkeiten mit Rand , solange die Einschränkung von auf die Fundamentalgruppen des Randes unipotent ist.) Implementiert ist dieser Algorithmus im Ptolemy Module als Teil der Software SnapPy.

Verallgemeinerung

In beliebigen Dimensionen k​ann man Chern-Simons-Formen z​ur Definition sekundärer charakteristischer Klassen verwenden.

Literatur

  • Freed, Daniel S.: Classical Chern-Simons theory. I.: Adv. Math. 113, no. 2, 237–303 (1995). pdf II.: Houston J. Math. 28, no. 2, 293–310 (2002). pdf

Einzelnachweise

  1. Witten, Edward: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, No. 3, 351-399 (1989).pdf
  2. Bar-Natan, Dror: Perturbative Chern-Simons theory. J. Knot Theory Ramifications 4 (1995), no. 4, 503–547. pdf
  3. Yoshida, Tomoyoshi: The η-invariant of hyperbolic 3-manifolds. Invent. Math. 81, 473-514 (1985). pdf
  4. Neumann, Walter D.: Extended Bloch group and the Cheeger-Chern-Simons class. Geom. Topol. 8, 413-474 (2004). pdf
  5. Goette, Sebastian; Zickert, Christian K.: The extended Bloch group and the Cheeger-Chern-Simons class. Geom. Topol. 11, 1623-1635 (2007). pdf
  6. Marché, Julien: Geometric interpretation of simplicial formulas for the Chern-Simons invariant. Algebr. Geom. Topol. 12, No. 2, 805-827 (2012). pdf@1@2Vorlage:Toter Link/www.math.jussieu.fr (Seite nicht mehr abrufbar, Suche in Webarchiven)  Info: Der Link wurde automatisch als defekt markiert. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis.
  7. S. Garoufalidis, D. Thurston, C. Zickert: The complex volume of SL(n,C)-representations of 3-manifolds. pdf
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.