Total unzusammenhängender Raum

Total unzusammenhängende Räume werden i​m mathematischen Teilgebiet d​er Topologie untersucht. In j​edem topologischen Raum s​ind einelementige Teilmengen u​nd die l​eere Menge zusammenhängend. Die t​otal unzusammenhängenden Räume s​ind dadurch gekennzeichnet, d​ass es i​n ihnen k​eine weiteren zusammenhängenden Teilmengen gibt.

Das w​ohl bekannteste Beispiel i​st die Cantor-Menge. Total unzusammenhängende Räume treten i​n vielen mathematischen Theorien auf.

Definition

Ein topologischer Raum heißt t​otal unzusammenhängend, w​enn es n​eben der leeren u​nd den einelementigen Teilmengen k​eine weiteren zusammenhängenden Teilmengen gibt.

Beispiele

Eigenschaften

  • Unterräume und Produkte total unzusammenhängender Räume sind wieder total unzusammenhängend.[1]
  • Jede stetige Abbildung von einem zusammenhängenden Raum in einen total unzusammenhängenden Raum ist konstant, denn das Bild ist wieder zusammenhängend und daher einelementig.

Anwendungen

Boolesche Algebren

Nach dem Darstellungssatz von Stone gibt es zu jeder Booleschen Algebra einen bis auf Homöomorphie eindeutig bestimmten, total unzusammenhängenden, kompakten Hausdorrfraum , so dass die Boolesche Algebra isomorph zur Algebra der offen-abgeschlossenen Teilmengen von ist.[2] Daher nennt man total unzusammenhängende, kompakte Hausdorffräume in diesem Zusammenhang auch Boolesche Räume.

C*-Algebren

Jede kommutative C*-Algebra ist nach dem Satz von Gelfand-Neumark isometrisch isomorph zur Algebra der stetigen Funktionen für einen bis auf Homöomorphie eindeutig bestimmten lokalkompakten Hausdorffraum . Es gilt[3]:

  • Eine kommutative, separable C*-Algebra ist genau dann AF-C*-Algebra, wenn total unzusammenhängend ist.

p-adische Zahlen

Die ganzen p-adischen Zahlen zu einer Primzahl sind bekanntlich als Reihen der Form mit darstellbar. Damit kann man mit identifizieren, was zu einem total unzusammenhängenden, kompakten Hausdorffraum macht. Dann ist der Körper der p-adischen Zahlen ein σ-kompakter, lokalkompakter, total unzusammenhängender Raum.

Einzelnachweise

  1. Philip J. Higgins: An Introduction to Topological Groups (= London Mathematical Society Lecture Note Series. Bd. 15). Cambridge University Press, London u. a. 1974 (recte 1975), ISBN 0-521-20527-1, Kapitel II.7, Satz 9.
  2. Paul R. Halmos: Lectures on Boolean Algebra. Springer, New York NY u. a. 1974, ISBN 0-387-90094-2, § 18, Theorem 6, Theorem 7.
  3. Kenneth R. Davidson: C*-Algebras by Example (= Fields Institute Monographs. Bd. 6). American Mathematical Society, Providence RI 1996, ISBN 0-8218-0599-1, Example III.2.5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.