Tomonaga-Luttinger-Flüssigkeit

Eine Tomonaga-Luttinger-Flüssigkeit (benannt n​ach Shin’ichirō Tomonaga u​nd Joaquin Mazdak Luttinger), häufig a​uch einfach a​ls Luttinger-Flüssigkeit bezeichnet, i​st ein theoretisches Modell z​ur Beschreibung v​on wechselwirkenden Elektronen (oder anderen Fermionen) i​n einem eindimensionalen elektrischen Leiter (z. B. Quantendrähte w​ie Kohlenstoffnanoröhren). Ein solches Modell i​st nötig, d​a das gewöhnlich benutzte Modell d​er Fermi-Flüssigkeit i​n einer Dimension versagt.

Dieser Artikel wurde in die Qualitätssicherung der Redaktion Physik eingetragen. Wenn du dich mit dem Thema auskennst, bist du herzlich eingeladen, dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.

Man n​immt an, d​ass das Luttinger-Modell d​as universelle Verhalten b​ei niedrigen Frequenzen (langen Wellenlängen) e​ines jeden eindimensionalen Systems wechselwirkender Fermionen beschreibt (sofern dieses n​icht einen Phasenübergang i​n einen anderen Zustand ausgeführt hat).

Tomonaga studierte 1950 eindimensionale Systeme geladener Fermionen[1] u​nd sagte d​eren Beschreibung d​urch Bosonen voraus (wie schon, w​ie sich später erwies, Pascual Jordan i​n den 1930er Jahren i​m Versuch e​iner Neutrino-Theorie d​es Lichts).[2] Luttinger stellte 1963 (ohne d​ie Arbeit v​on Tomonaga z​u kennen) e​in spezielles e​xakt lösbares Modell vor[3] u​nd Elliott Lieb u​nd Daniel Mattis klärten dessen exakte Lösbarkeit d​urch Bosonisierung.[2] Der Name Luttinger-Flüssigkeit w​urde 1981 d​urch F. Duncan M. Haldane geprägt.[4]

Eigenschaften

Zu d​en wesentlichen Eigenschaften e​iner Luttinger-Flüssigkeit zählen:

  • Die Antwort der Ladungs- oder Teilchendichte auf eine äußere Störung sind Dichtewellen (Plasmonen), deren Geschwindigkeit durch die Stärke der Wechselwirkung und die mittlere Dichte bestimmt wird. Für nichtwechselwirkende Systeme ist diese Ausbreitungsgeschwindigkeit gleich der Fermi-Geschwindigkeit, während sie bei abstoßender (anziehender) Wechselwirkung zwischen Fermionen größer (kleiner) als diese ist.
  • Ebenso gibt es Spindichtewellen, deren Geschwindigkeit in erster Näherung der Fermi-Geschwindigkeit entspricht. Diese pflanzen sich unabhängig von den Ladungsdichtewellen fort. Man spricht daher von Spin-Ladungs-Trennung.
  • Ladungs- und Spinwellen sind also separate elementare Anregungen der Luttinger-Flüssigkeit, im Gegensatz zu den Quasiteilchen der Fermi-Flüssigkeit, die sowohl Spin als auch Ladung besitzen. Die mathematische Beschreibung geschieht am einfachsten mittels dieser Wellen. Man löst die eindimensionale Wellengleichung, und ein Großteil der Arbeit besteht darin, zurück zu transformieren um die Eigenschaften der Teilchen zu erhalten. Eine weitere Schwierigkeit besteht in der Behandlung von Störstellen und anderen Fällen, in denen die Rückstreuung (engl. backscattering) eine wesentliche Rolle spielt.
  • Selbst am absoluten Nullpunkt ändert sich die Impulsverteilung der Teilchen nirgends abrupt, im Gegensatz zur Fermi-Flüssigkeit, wo deren Unstetigkeit die Fermi-Fläche definiert.
  • Die impulsabhängige Spektralfunktion weist keinen Quasiteilchen-Peak auf (also keinen Scheitel, dessen Breite oberhalb des Fermi-Niveaus viel kleiner wird als die Anregungsenergie). Stattdessen gibt es eine algebraische Singularität mit einem nicht-universellen Exponenten, der von der Stärke der Wechselwirkung abhängt.
  • In der Nähe von Störstellen treten die üblichen Friedel-Oszillationen der Ladungsdichte mit einem Wellenvektor von auf. Für große Abstände von der Störstelle verschwinden diese , wobei der Exponent von der Wechselwirkung abhängt ( für eine Fermi-Flüssigkeit).
  • Bei niedrigen Temperaturen ist die Streuung an diesen Friedel-Oszillationen so stark, dass die renormierte effektive Stärke der Störstelle unendlich wird und damit den Quantendraht abschnürt. Genauer gesagt: die Leitfähigkeit geht mit abnehmender Temperatur und angelegter Spannung gegen Null (und folgt dabei einem Potenzgesetz, dessen Exponent von der Wechselwirkung abhängt)
  • Ebenso ist bei kleinen Spannungen und Temperaturen die Tunnelrate in die Luttinger-Flüssigkeit unterdrückt.

Anwendungen

Zu d​en physikalischen Systemen v​on denen m​an glaubt, d​ass sie s​ich mit d​em Luttinger-Modell beschreiben lassen, zählen:

  • künstliche Quantendrähte (eindimensionale Elektronenstreifen), die zum Beispiel mit Hilfe einer Gate-Spannung in einem zweidimensionalen Elektronengas erzeugt werden (oder auch lithographisch, oder Rasterkraftmikroskop etc.)
  • Elektronen in Kohlenstoffnanoröhren
  • Elektronen in Randzuständen des Quanten-Hall-Effekts (und dessen gebrochenzahliger Variante)
  • Elektronen, die entlang eindimensionaler Molekülketten (zum Beispiel bestimmte organische molekulare Kristalle) hüpfen (engl. hopping)
  • fermionische Atome in quasi-eindimensionalen Atomfallen

Der Nachweis der charakteristischen Eigenschaften einer Luttinger-Flüssigkeit in diesen Systemen ist ein aktuelles Forschungsgebiet der experimentellen Festkörperphysik.

Literatur

  • Vieri Mastropietro, Daniel Charles Mattis: Luttinger Model. The First 50 Years and Some New Directions. World Scientific, 2013, ISBN 978-981-4520-71-3 (Zusammenfassung bei World Scientific).
  • Sebastian Mietke: Rastertunnelmikroskopie und -spektroskopie an Au/Ge(001)-Nanodrähten. Ein Modellsystem der Luttinger-Flüssigkeit. Kassel University Press, 2014, ISBN 978-3-86219-724-8 (eingeschränkte Vorschau in der Google-Buchsuche).
  • H.J. Schulz, G. Cuniberti, P. Pieri: Fermi liquids and Luttinger liquids. In: G. Morandi et al. Eds. (Hrsg.): Field Theories for Low-Dimensional Condensed Matter Systems. Springer, 2000, ISBN 3-540-67177-3, arxiv:cond-mat/9807366.
  • Johannes Voit: One-dimensional Fermi liquids. In: Rep. Prog. Phys. Band 58, 1995, S. 977–1116, doi:10.1088/0034-4885/58/9/002.
  • Johannes Voit: A brief introduction to Luttinger liquids. In: Proceedings of the International Winterschool on Electronic Properties of Novel Materials. Kirchberg März 2000, arxiv:cond-mat/0005114.
  • K. Schonhammer: Physics in one dimension: theoretical concepts for quantum many-body systems. In: J. Phys. Condens. Matter 25, 2013, S. 25, arxiv:1212.1632.

Einzelnachweise

  1. Sin-itiro Tomonaga: Remarks on Bloch’s Method of Sound Waves applied to Many-Fermion Problems. In: Prog. Theor. Phys. Band 5, Nr. 4, 1950, S. 544–569, doi:10.1143/ptp/5.4.544.
  2. Daniel C. Mattis, Elliott H. Lieb: Exact Solution of a Many-Fermion System and Its Associated Boson Field. In: J. Math. Phys. Band 6, Nr. 2, 1965, S. 304–312, doi:10.1063/1.1704281 (eingeschränkte Vorschau bei SpringerLink [abgerufen am 22. Dezember 2014]).
  3. J.M. Luttinger: An exactly soluable model of a many-fermion system. In: J. Math. Phys. Band 4, Nr. 9, 1963, S. 1154–1162, doi:10.1063/1.1704046.
  4. F.D.M. Haldane: 'Luttinger liquid theory' of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. In: J. Phys. C. Band 14, Nr. 19, 1981, S. 2585–2919, doi:10.1088/0022-3719/14/19/010.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.