Schwach-kompakter Operator

Schwach-kompakte Operatoren werden i​n der Funktionalanalysis untersucht. Es handelt s​ich dabei u​m eine Klasse linearer beschränkter Operatoren zwischen Banachräumen m​it einer zusätzlichen Kompaktheitseigenschaft, d​ie den kompakten Operatoren nachempfunden ist. Diese Begriffsbildung spielt e​ine wichtige Rolle i​n der Dunford-Pettis-Eigenschaft.

Definition

Seien und Banachräume. Ein linearer Operator heißt schwach-kompakt, wenn für jede beschränkte Menge der schwache Abschluss des Bildes schwach kompakt ist.[1]

Ersetzt m​an in dieser a​uf S. Kakutani u​nd K. Yosida zurückgehenden Definition d​ie schwache Topologie d​urch die Normtopologie, s​o erhält m​an genau d​en Begriff d​es kompakten Operators.

Eigenschaften

Für einen linearen Operator zwischen Banachräumen gilt:

kompakter Operator schwach-kompakter Operator beschränkter Operator.

Die Umkehrungen gelten nicht, wie die identischen Operatoren auf den Folgenräumen und zeigen.

  • ist beschränkt, aber nicht schwach-kompakt.
  • ist schwach-kompakt, aber nicht kompakt.

Sind und Banachräume, von denen mindestens einer reflexiv ist, so ist jeder beschränkte lineare Operator zwischen ihnen schwach-kompakt.

Summen, skalare Vielfache und Norm-Grenzwerte schwach-kompakter Operatoren sind wieder schwach-kompakt. Ein Produkt beschränkter linearer Operatoren ist schwach-kompakt, wenn einer der Faktoren oder schwach-kompakt ist. Die Menge aller schwach-kompakten Operatoren zwischen den Banachräumen und ist daher bezüglich der Operatornorm wieder ein Banachraum. Im Falle liegt ein abgeschlossenes zweiseitiges Ideal in der Banachalgebra aller beschränkten Operatoren auf vor.

Charakterisierungen

Der folgende einfache Satz charakterisiert d​ie schwache Kompaktheit:

Für einen linearen Operator zwischen Banachräumen sind

folgende Aussagen äquivalent:

  • ist schwach-kompakt.
  • ist relativ schwach-kompakt.
  • Jede beschränkte Folge in hat eine Teilfolge , so dass in schwach konvergiert.

In der folgenden auf V. R. Gantmacher (für den Fall separabler Räume) und Nakamura (für den allgemeinen Fall) zurückgehenden Charakterisierung bezeichne die kanonische Einbettung in den Bidualraum .

Für einen linearen Operator zwischen Banachräumen sind folgende Aussagen äquivalent:[2]

  • ist schwach-kompakt.
  • .

Satz von Gantmacher

In Analogie z​um Satz v​on Schauder g​ilt der folgende

Satz von Gantmacher:[3] Für einen linearen Operator zwischen Banachräumen sind folgende Aussagen äquivalent:

  • ist schwach-kompakt.
  • Der adjungierte Operator ist schwach-kompakt.

Daraus kann man eine weitere Charakterisierung herleiten: Für einen linearen Operator zwischen Banachräumen sind folgende Aussagen äquivalent:

  • ist schwach-kompakt.
  • ist schwach*-schwach-stetig.

Faktorisierung über reflexive Räume

Man sagt, ein stetiger, linearer Operator faktorisiert über einen Banachraum , falls es stetige lineare Operatoren und gibt mit . Da ein stetiger, linearer Operator zwischen zwei Banachräumen, von denen einer reflexiv ist, nach obigen Eigenschaften schwach-kompakt ist und da Produkte von stetigen linearen Operatoren bereits dann schwach-kompakt sind, wenn mindestens ein Faktor schwach-kompakt ist, muss bereits jeder stetige, lineare Operator, der über einen reflexiven Raum faktorisiert, schwach-kompakt sein. Nach einem Satz von Davis, Figiel, Johnson und Pełczyński gilt hiervon auch die Umkehrung, das heißt, man hat insgesamt die folgende Charakterisierung schwach-kompakter Operatoren:[4][5]

  • Ein stetiger, linearer Operator ist genau schwach-kompakt, wenn er über einen reflexiven Banachraum faktorisiert. Dabei können die Normen der Faktoren durch das Doppelte der Norm des Ausgangsoperators begrenzt werden.

Schwach-kompakte Operatoren auf C(K)

Es sei ein kompakter Hausdorffraum und sei der Funktionenraum der stetigen Funktionen mit der Supremumsnorm. Dann lassen sich die schwach-kompakten Operatoren mit Werten in einem Banachraum wie folgt angeben:[6]

Es sei ein reguläres, vektorielles Maß auf (mit der borelschen σ-Algebra) mit Werten in . Regularität bedeutet hier, dass die skalaren Maße für alle regulär sind. Dann ist durch

ein schwach-kompakter Operator gegeben. Die Operatornorm von ist gleich der Semivariation des Maßes .

Umgekehrt hat jeder schwach-kompakte Operator diese Gestalt, das heißt, es gibt ein reguläres vektorielles Maß auf mit Werten in , so dass der Operator durch obige Formel beschrieben wird, das heißt, es gilt .

So ein schwach-kompakter Operator ist genau dann kompakt, wenn relativ kompakt ist.[7] Damit konstruiert man leicht weitere Beispiele schwach-kompakter Operatoren, die nicht kompakt sind.

Einzelnachweise

  1. Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag 1998, ISBN 0-387-98431-3, Definition 3.5.1
  2. Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag 1998, ISBN 0-387-98431-3, Theorem 3.5.8
  3. Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag 1998, ISBN 0-387-98431-3, Theorem 3.5.13
  4. W. J. Davis, T. Figiel, W. B. Johnson, A. Pełczyński: Factoring weakly compact operators. J. Functional Analysis (1974), Band 17 No. 3, S. 311–327.
  5. P. Wojtaszczyk: Banach spaces for analysts. Cambridge University Press 1991, ISBN 0-521-35618-0, II.C.5
  6. Raymond A. Ryan: Introduction to Tensor Products of Banach Spaces. Springer-Verlag 2002, ISBN 1-85233-437-1, Theorem 5.25
  7. Raymond A. Ryan: Introduction to Tensor Products of Banach Spaces. Springer-Verlag 2002, ISBN 1-85233-437-1, Theorem 5.27
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.