Sattel-Knoten-Bifurkation

Die Sattel-Knoten-Bifurkation (englisch saddle-node bifurcation), Falten-Bifurkation (engl. fold bifurcation), Tangenten-Bifurkation (engl. tangent bifurcation), limit point o​der turning point i​st ein bestimmter Typ e​iner Bifurkation e​ines nichtlinearen dynamischen Systems.

Bifurkationsdiagramm einer Sattel-Knoten-Bifurkation. Stabile Fixpunkte sind rot, instabile blau dargestellt.

Die Normalform d​er Sattel-Knoten-Bifurkation lautet

wobei der Bifurkationsparameter ist.

Diese Normalform hat für Fixpunkte:

Das bedeutet, es existiert für kein Fixpunkt, für genau ein Fixpunkt und sonst zwei. Der erste Fixpunkt ist stabil (Knoten), der zweite instabil (Sattel). Am Bifurkationspunkt kollidieren Sattel und Knoten. Betrachtet man ein System mit höherer Ordnung in

so beeinflussen diese Terme in einer genügend kleinen Umgebung um den Sattel-Knoten-Punkt das Verhalten des Systems nicht. Das heißt, das System ist lokal topologisch äquivalent am Ursprung zur Normalform. Allgemein ist die Bifurkation dadurch charakterisiert, dass ein Eigenwert der Jacobimatrix des dynamischen Systems bei einem kritischen Wert des Bifurkationsparameters Null wird.

Siehe auch

Literatur

  • Yuri A. Kuznetsov: Elements of Applied Bifurcation Theory (= Applied Mathematica Sciences. Band 112). 2. Auflage. Springer, 1995, ISBN 0-387-98382-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.