Quantiltabelle

Eine Quantiltabelle i​st eine Tabelle i​n der Stochastik, welche numerisch berechnete Quantile bestimmter Wahrscheinlichkeitsverteilungen enthält.

Quantilstabellen werden a​n zahlreichen Stellen i​n der mathematischen Statistik verwendet. So werden s​ie beispielsweise für d​ie Bestimmung v​on Konfidenzintervallen herangezogen. Des Weiteren lassen s​ich bei normalverteilten Zufallsvariablen m​it gegebener Varianz u​nd gegebenem Erwartungswert über d​ie Z-Transformation i​n Kombination m​it der entsprechenden Quantiltabelle direkt Wahrscheinlichkeiten bestimmen.

Rahmenbedingungen

Ein p-Quantil einer Wahrscheinlichkeitsverteilung mit Wahrscheinlichkeitsdichtefunktion.

Als p-Quantil einer Wahrscheinlichkeitsverteilung auf den reellen Zahlen wird eine reelle Zahl bezeichnet, so dass

und

ist. Hierbei ist . Besitzt die Wahrscheinlichkeitsverteilung eine stetige Verteilungsfunktion , so ist die äquivalent zu

.

Ist die Verteilungsfunktion streng monoton wachsend. so ist eindeutig bestimmt. Das p-Quantil trennt dann die reellen Zahlen in zwei Teile: der Teil kleiner als , welcher die Wahrscheinlichkeit erhält, und der Teil größer als , welcher die Wahrscheinlichkeit erhält.

In vielen Anwendungen d​er Statistik benötigt m​an häufig d​ie Quantile gewisser Wahrscheinlichkeitsverteilungen. Zu diesen Verteilungen gehören:

Alle Quantile dieser Verteilungen s​ind eindeutig. Jedoch existiert für manche Verteilungen k​eine geschlossene Darstellung d​er Verteilungsfunktion (Normalverteilung) o​der diese geschlossene Darstellung i​st sehr komplex beziehungsweise d​as Lösen d​er Gleichung

ist n​icht praktikabel. Daher werden d​ie wichtigen Quantile d​iese Verteilungen m​it der notwendigen Genauigkeit numerisch bestimmt u​nd in Tabellen zusammengefasst. So können s​ie nachgeschlagen werden, o​hne jedes Mal erneut numerisch bestimmt z​u werden.

Welche Werte die Tabelle genau enthält und wie viele Nachkommastellen sie enthält, hängt von der jeweiligen Verteilung ab und dem Kontext, in dem diese benötigt wird. So wird für die leicht zu normierende Normalverteilung beispielsweise nur die Standardnormalverteilung tabelliert, hierbei dann jedoch mit auf zwei Nachkommastellen genau und das entsprechende auf vier Nachkommastellen. Für die Student-Verteilung werden dagegen nur die Quantile etc. angegeben, dafür aber mit variabler Anzahl an Freiheitsgraden. Details hierzu und zur Verwendung der einzelnen Tabellen finden sich in den entsprechenden Abschnitten.

Wichtige Quantiltabellen

Nachfolgend s​ind einige wichtige Quantiltabellen aufgeführt. Die Auswahl d​er tabellierten Werte f​olgt dabei[1][2][3]

Normalverteilung

Die Quantiltabelle d​er Normalverteilung, genauer d​er Standardnormalverteilung, befindet s​ich im Artikel Standardnormalverteilungstabelle. Dort i​st auch d​er Umgang m​it der Tabelle erklärt s​owie einige Beispiele aufgeführt.

Chi-Quadrat-Verteilung

p-Quantile der Chi-Quadrat-Verteilung mit n Freiheitsgraden
p=0,0050,0100,0200,0250,0500,1000,2500,5000,7500,9000,9500,9750,9800,9900,995
n=13,927e-51,571e-46,285e-49,820e-43,932e-31,579e-21,015e-14,549e-11,3232,7063,8415,0245,4126,6357,879
21,003e-22,010e-24,041e-25,064e-21,026e-12,107e-15,754e-11,3862,7734,6055,9917,3787,8249,21010,60
37,172e-21,1480e-11,848e-12,158e-13,518e-15,844e-11,2132,3664,1086,2517,8159,3489,83711,3412,84
42,070e-12,971e-14,294e-14,844e-17,107e-11,0641,9233,3575,3857,7799,48811,1411,6713,2814,86
54,117e-15,543e-17,519e-18,312e-11,1451,61002,6754,3516,6269,23611,0712,8313,3915,0916,75
66,757e-18,721e-11,1341,2371,6352,2043,4555,3487,84110,6412,5914,4515,0316,8118,55
70,98931,2391,5641,69002,1672,8334,2556,3469,03712,0214,0716,0116,6218,4820,28
81,3441,6462,0322,1802,7333,4905,0717,34410,2213,3615,5117,5318,1720,0921,95
91,7352,0882,5322,7003,3254,1685,8998,34311,3914,6816,9219,0219,6821,6723,59
102,1562,5583,0593,2473,9404,8656,7379,34212,5515,9918,3120,4821,1623,2125,19
112,6033,0533,6093,8164,5755,5787,58410,3413,7017,2819,6821,9222,6224,7226,76
123,0743,5714,1784,4045,2266,3048,43811,3414,8518,5521,0323,3424,0526,2228,30
133,5654,1074,7655,0095,8927,0429,29912,3415,9819,8122,3624,7425,4727,6929,82
144,0754,6605,3685,6296,5717,79010,1713,3417,1221,0623,6826,1226,8729,1431,32
154,6015,2295,9856,2627,2618,54711,0414,3418,2522,3125,0027,4928,2630,5832,80
165,1425,8126,6146,9087,9629,31211,9115,3419,3723,5426,3028,8529,6332,0034,27
175,6976,4087,2557,5648,67210,0912,7916,3420,4924,7727,5930,1931,0033,4135,72
186,2657,0157,9068,2319,39010,8613,6817,3421,6025,9928,8731,5332,3534,8137,16
196,8447,6338,5678,90710,1211,6514,5618,3422,7227,2030,1432,8533,6936,1938,58
207,4348,2609,2379,59110,8512,4415,4519,3423,8328,4131,4134,1735,0237,5740,00
218,0348,8979,91510,2811,5913,2416,3420,3424,9329,6232,6735,4836,3438,9341,40
228,6439,54210,6010,9812,3414,0417,2421,3426,0430,8133,9236,7837,6640,2942,80
239,26010,2011,2911,6913,0914,8518,1422,3427,1432,0135,1738,0838,9741,6444,18
249,88610,8611,9912,4013,8515,6619,0423,3428,2433,2036,4239,3640,2742,9845,56
2510,5211,5212,7013,1214,6116,4719,9424,3429,3434,3837,6540,6541,5744,3146,93
2611,1612,2013,4113,8415,3817,2920,8425,3430,4335,5638,8941,9242,8645,6448,29
2711,8112,8814,1314,5716,1518,1121,7526,3431,5336,7440,1143,1944,1446,9649,64
2812,4613,5614,8515,3116,9318,9422,6627,3432,6237,9241,3444,4645,4248,2850,99
2913,1214,2615,5716,0517,7119,7723,5728,3433,7139,0942,5645,7246,6949,5952,34
3013,7914,9516,3116,7918,4920,6024,4829,3434,8040,2643,7746,9847,9650,8953,67
3517,1918,5120,0320,5722,4724,8029,0534,3440,2246,0649,8053,2054,2457,3460,27
4020,7122,1623,8424,4326,5129,0533,6639,3445,6251,8155,7659,3460,4463,6966,77
4524,3125,9027,7228,3730,6133,3538,2944,3450,9857,5161,6665,4166,5669,9673,17
5027,9929,7131,6632,3634,7637,6942,9449,3356,3363,1767,5071,4272,6176,1579,49
5531,7333,5735,6636,4038,9642,0647,6154,3361,6668,8073,3177,3878,6282,2985,75
6035,5337,4839,7040,4843,1946,4652,2959,3366,9874,4079,0883,3084,5888,3891,95
7043,2845,4447,8948,7651,7455,3361,7069,3377,5885,5390,5395,0296,39100,4104,2
8051,1753,5456,2157,1560,3964,2871,1479,3388,1396,58101,9106,6108,1112,3116,3
9059,2061,7564,6365,6569,1373,2980,6289,3398,65107,6113,1118,1119,6124,1128,3
10067,3370,0673,1474,2277,9382,3690,1399,33109,1118,5124,3129,6131,1135,8140,2
150109,1112,7116,6118,0122,7128,3138,0149,3161,3172,6179,6185,8187,7193,2198,4
200152,2156,4161,1162,7168,3174,8186,2199,3213,1226,0234,0241,1243,2249,4255,3
250196,2200,9206,2208,1214,4221,8234,6249,3264,7279,1287,9295,7298,0304,9311,3
300240,7246,0251,9253,9260,9269,1283,1299,3316,1331,8341,4349,9352,4359,9366,8
400330,9337,2344,1346,5354,6364,2380,6399,3418,7436,6447,6457,3460,2468,7476,6
600514,5522,4531,0534,0544,2556,1576,3599,3623,0644,8658,1669,8673,3683,5693,0
800700,7709,9720,0723,5735,4749,2772,7799,3826,6851,7866,9880,3884,3896,0906,8
1000888,6898,9910,3914,3927,6943,1969,5999,310291057107410891094,1107,1118

Studentsche t-Verteilung

p-Quantile der Studentschen t-Verteilung mit n Freiheitsgraden
p=0,90,950,960,9750,980,990,9950,9990,9995
n=13,0786,3147,91612,7115,8931,8263,66318,3636,6
21,8862,9203,3204,3034,8496,9659,92522,3331,60
31,6382,3532,6053,1823,4824,5415,84110,2112,92
41,5332,1322,3332,7762,9993,7474,6047,1738,610
51,4762,0152,1912,5712,7573,3654,0325,8936,869
61,4401,9432,1042,4472,6123,1433,7075,2085,959
71,4151,8952,0462,3652,5172,9983,4994,7855,408
81,3971,8602,0042,3062,4492,8963,3554,5015,041
91,3831,8331,9732,2622,3982,8213,2504,2974,781
101,3721,8121,9482,2282,3592,7643,1694,1444,587
111,3631,7961,9282,2012,3282,7183,1064,0254,437
121,3561,7821,9122,1792,3032,6813,0553,9304,318
131,3501,7711,8992,1602,2822,6503,0123,8524,221
141,3451,7611,8872,1452,2642,6242,9773,7874,140
151,3411,7531,8782,1312,2492,6022,9473,7334,073
161,3371,7461,8692,1202,2352,5832,9213,6864,015
171,3331,7401,8622,1102,2242,5672,8983,6463,965
181,3301,7341,8552,1012,2142,5522,8783,6103,922
191,3281,7291,8502,0932,2052,5392,8613,5793,883
201,3251,7251,8442,0862,1972,5282,8453,5523,850
211,3231,7211,8402,0802,1892,5182,8313,5273,819
221,3211,7171,8352,0742,1832,5082,8193,5053,792
231,3191,7141,8322,0692,1772,5002,8073,4853,768
241,3181,7111,8282,0642,1722,4922,7973,4673,745
251,3161,7081,8252,0602,1672,4852,7873,4503,725
261,3151,7061,8222,0562,1622,4792,7793,4353,707
271,3141,7031,8192,0522,1582,4732,7713,4213,690
281,3131,7011,8172,0482,1542,4672,7633,4083,674
291,3111,6991,8142,0452,1502,4622,7563,3963,659
301,3101,6971,8122,0422,1472,4572,7503,3853,646
351,3061,6901,8032,0302,1332,4382,7243,3403,591
401,3031,6841,7962,0212,1232,4232,7043,3073,551
451,3011,6791,7912,0142,1152,4122,6903,2813,520
501,2991,6761,7872,0092,1092,4032,6783,2613,496
601,2961,6711,7812,0002,0992,3902,6603,2323,460
701,2941,6671,7761,9942,0932,3812,6483,2113,435
801,2921,6641,7731,9902,0882,3742,6393,1953,416
901,2911,6621,7711,9872,0842,3682,6323,1833,402
1001,2901,6601,7691,9842,0812,3642,6263,1743,390
1501,2871,6551,7631,9762,0722,3512,6093,1453,357
2001,2861,6531,7601,9722,0672,3452,6013,1313,340
2501,2851,6511,7581,9692,0652,3412,5963,1233,330
3001,2841,6501,7571,9682,0632,3392,5923,1183,323
4001,2841,6491,7551,9662,0602,3362,5883,1113,315
5001,2831,6481,7541,9652,0592,3342,5863,1073,310
6001,2831,6471,7541,9642,0582,3332,5843,1043,307
8001,2831,6471,7531,9632,0572,3312,5823,1003,303
10001,2821,6461,7521,9622,0562,3302,5813,0983,300
1000001,2821,6451,7511,9602,0542,3262,5763,0903,291

Fisher-Verteilung

0.95-Quantile der Fisher-Verteilung mit n Freiheitsgraden im Nenner und m Freiheitsgraden im Zähler
m=12345678910111214161820222430405060100100000
n=1161,4199,5215,7224,6230,2234,0236,8238,9240,5241,9243,0243,9244,7245,4245,9246,5246,9247,3247,7248,0248,3248,6248,8249,1
218,5119,0019,1619,2519,3019,3319,3519,3719,3819,4019,4019,4119,4219,4219,4319,4319,4419,4419,4419,4519,4519,4519,4519,45
310,139,5529,2779,1179,0138,9418,8878,8458,8128,7868,7638,7458,7298,7158,7038,6928,6838,6758,6678,6608,6548,6488,6438,639
47,7096,9446,5916,3886,2566,1636,0946,0415,9995,9645,9365,9125,8915,8735,8585,8445,8325,8215,8115,8035,7955,7875,7815,774
56,6085,7865,4095,1925,0504,9504,8764,8184,7724,7354,7044,6784,6554,6364,6194,6044,5904,5794,5684,5584,5494,5414,5344,527
65,9875,1434,7574,5344,3874,2844,2074,1474,0994,0604,0274,0003,9763,9563,9383,9223,9083,8963,8843,8743,8653,8563,8493,841
75,5914,7374,3474,1203,9723,8663,7873,7263,6773,6373,6033,5753,5503,5293,5113,4943,4803,4673,4553,4453,4353,4263,4183,410
85,3184,4594,0663,8383,6873,5813,5003,4383,3883,3473,3133,2843,2593,2373,2183,2023,1873,1733,1613,1503,1403,1313,1233,115
95,1174,2563,8633,6333,4823,3743,2933,2303,1793,1373,1023,0733,0483,0253,0062,9892,9742,9602,9482,9362,9262,9172,9082,900
104,9654,1033,7083,4783,3263,2173,1353,0723,0202,9782,9432,9132,8872,8652,8452,8282,8122,7982,7852,7742,7642,7542,7452,737
114,8443,9823,5873,3573,2043,0953,0122,9482,8962,8542,8182,7882,7612,7392,7192,7012,6852,6712,6582,6462,6362,6262,6172,609
124,7473,8853,4903,2593,1062,9962,9132,8492,7962,7532,7172,6872,6602,6372,6172,5992,5832,5682,5552,5442,5332,5232,5142,505
134,6673,8063,4113,1793,0252,9152,8322,7672,7142,6712,6352,6042,5772,5542,5332,5152,4992,4842,4712,4592,4482,4382,4292,420
144,6003,7393,3443,1122,9582,8482,7642,6992,6462,6022,5652,5342,5072,4842,4632,4452,4282,4132,4002,3882,3772,3672,3572,349
154,5433,6823,2873,0562,9012,7902,7072,6412,5882,5442,5072,4752,4482,4242,4032,3852,3682,3532,3402,3282,3162,3062,2972,288
164,4943,6343,2393,0072,8522,7412,6572,5912,5382,4942,4562,4252,3972,3732,3522,3332,3172,3022,2882,2762,2642,2542,2442,235
174,4513,5923,1972,9652,8102,6992,6142,5482,4942,4502,4132,3812,3532,3292,3082,2892,2722,2572,2432,2302,2192,2082,1992,190
184,4143,5553,1602,9282,7732,6612,5772,5102,4562,4122,3742,3422,3142,2902,2692,2502,2332,2172,2032,1912,1792,1682,1592,150
194,3813,5223,1272,8952,7402,6282,5442,4772,4232,3782,3402,3082,2802,2562,2342,2152,1982,1822,1682,1552,1442,1332,1232,114
204,3513,4933,0982,8662,7112,5992,5142,4472,3932,3482,3102,2782,2502,2252,2032,1842,1672,1512,1372,1242,1122,1022,0922,082
214,3253,4673,0722,8402,6852,5732,4882,4202,3662,3212,2832,2502,2222,1972,1762,1562,1392,1232,1092,0962,0842,0732,0632,054
224,3013,4433,0492,8172,6612,5492,4642,3972,3422,2972,2592,2262,1982,1732,1512,1312,1142,0982,0842,0712,0592,0482,0382,028
234,2793,4223,0282,7962,6402,5282,4422,3752,3202,2752,2362,2042,1752,1502,1282,1092,0912,0752,0612,0482,0362,0252,0142,005
244,2603,4033,0092,7762,6212,5082,4232,3552,3002,2552,2162,1832,1552,1302,1082,0882,0702,0542,0402,0272,0152,0031,9931,984
254,2423,3852,9912,7592,6032,4902,4052,3372,2822,2362,1982,1652,1362,1112,0892,0692,0512,0352,0212,0071,9951,9841,9741,964
264,2253,3692,9752,7432,5872,4742,3882,3212,2652,2202,1812,1482,1192,0942,0722,0522,0342,0182,0031,9901,9781,9661,9561,946
274,2103,3542,9602,7282,5722,4592,3732,3052,2502,2042,1662,1322,1032,0782,0562,0362,0182,0021,9871,9741,9611,9501,9401,930
284,1963,3402,9472,7142,5582,4452,3592,2912,2362,1902,1512,1182,0892,0642,0412,0212,0031,9871,9721,9591,9461,9351,9241,915
294,1833,3282,9342,7012,5452,4322,3462,2782,2232,1772,1382,1042,0752,0502,0272,0071,9891,9731,9581,9451,9321,9211,9101,901
304,1713,3162,9222,6902,5342,4212,3342,2662,2112,1652,1262,0922,0632,0372,0151,9951,9761,9601,9451,9321,9191,9081,8971,887
314,1603,3052,9112,6792,5232,4092,3232,2552,1992,1532,1142,0802,0512,0262,0031,9831,9651,9481,9331,9201,9071,8961,8851,875
324,1493,2952,9012,6682,5122,3992,3132,2442,1892,1422,1032,0702,0402,0151,9921,9721,9531,9371,9221,9081,8961,8841,8731,864
334,1393,2852,8922,6592,5032,3892,3032,2352,1792,1332,0932,0602,0302,0041,9821,9611,9431,9261,9111,8981,8851,8731,8631,853
344,1303,2762,8832,6502,4942,3802,2942,2252,1702,1232,0842,0502,0211,9951,9721,9521,9331,9171,9021,8881,8751,8631,8531,843
354,1213,2672,8742,6412,4852,3722,2852,2172,1612,1142,0752,0412,0121,9861,9631,9421,9241,9071,8921,8781,8661,8541,8431,833
404,1133,2592,8662,6342,4772,3642,2772,2092,1532,1062,0672,0332,0031,9771,9541,9341,9151,8991,8831,8701,8571,8451,8341,824
454,1053,2522,8592,6262,4702,3562,2702,2012,1452,0982,0592,0251,9951,9691,9461,9261,9071,8901,8751,8611,8481,8371,8261,816
504,0983,2452,8522,6192,4632,3492,2622,1942,1382,0912,0512,0171,9881,9621,9391,9181,8991,8831,8671,8531,8411,8291,8181,808
554,0913,2382,8452,6122,4562,3422,2552,1872,1312,0842,0442,0101,9811,9541,9311,9111,8921,8751,8601,8461,8331,8211,8101,800
604,0853,2322,8392,6062,4492,3362,2492,1802,1242,0772,0382,0031,9741,9481,9241,9041,8851,8681,8531,8391,8261,8141,8031,793
704,0793,2262,8332,6002,4432,3302,2432,1742,1182,0712,0311,9971,9671,9411,9181,8971,8791,8621,8461,8321,8191,8071,7961,786
804,0733,2202,8272,5942,4382,3242,2372,1682,1122,0652,0251,9911,9611,9351,9121,8911,8721,8551,8401,8261,8131,8011,7901,780
904,0673,2142,8222,5892,4322,3182,2322,1632,1062,0592,0201,9851,9551,9291,9061,8851,8661,8491,8341,8201,8071,7951,7841,773
1004,0623,2092,8162,5842,4272,3132,2262,1572,1012,0542,0141,9801,9501,9241,9001,8791,8611,8441,8281,8141,8011,7891,7781,767
1204,0573,2042,8122,5792,4222,3082,2212,1522,0962,0492,0091,9741,9451,9181,8951,8741,8551,8381,8231,8081,7951,7831,7721,762
1504,0523,2002,8072,5742,4172,3042,2162,1472,0912,0442,0041,9691,9401,9131,8901,8691,8501,8331,8171,8031,7901,7781,7671,756
2004,0473,1952,8022,5702,4132,2992,2122,1432,0862,0391,9991,9651,9351,9081,8851,8641,8451,8281,8121,7981,7851,7731,7621,751
3004,0433,1912,7982,5652,4092,2952,2072,1382,0822,0351,9951,9601,9301,9041,8801,8591,8401,8231,8071,7931,7801,7681,7571,746
4004,0383,1872,7942,5612,4042,2902,2032,1342,0772,0301,9901,9561,9261,8991,8761,8551,8361,8191,8031,7891,7751,7631,7521,742
5004,0343,1832,7902,5572,4002,2862,1992,1302,0732,0261,9861,9521,9211,8951,8711,8501,8311,8141,7981,7841,7711,7591,7481,737
1000004,0303,1792,7862,5532,3972,2832,1952,1262,0692,0221,9821,9471,9171,8911,8671,8461,8271,8101,7941,7801,7671,7541,7431,733
0.99-Quantile der Fisher-Verteilung mit n Freiheitsgraden im Nenner und m Freiheitsgraden im Zähler
m=12345678910111214161820222430405060100100000
n=14052,49995403562457635859592859816022605560836106612561426157617061816191620062086216622262296234
298,5099,0099,1799,2599,3099,3399,3699,3799,3999,4099,4199,4299,4299,4399,4399,4499,4499,4499,4599,4599,4599,4599,4699,46
334,1230,8229,4628,7128,2427,9127,6727,4927,3527,2327,1327,0526,9826,9226,8726,8326,7926,7526,7226,6926,6626,6426,6226,60
421,2018,0016,6915,9815,5215,2114,9814,8014,6614,5514,4514,3714,3114,2514,2014,1514,1114,0814,0514,0213,9913,9713,9513,93
516,2613,2712,0611,3910,9710,6710,4610,2910,1610,059,9639,8889,8259,7709,7229,6809,6439,6109,5809,5539,5289,5069,4859,466
613,7510,929,7809,1488,7468,4668,2608,1027,9767,8747,7907,7187,6577,6057,5597,5197,4837,4517,4227,3967,3727,3517,3317,313
712,259,5478,4517,8477,4607,1916,9936,8406,7196,6206,5386,4696,4106,3596,3146,2756,2406,2096,1816,1556,1326,1116,0926,074
811,268,6497,5917,0066,6326,3716,1786,0295,9115,8145,7345,6675,6095,5595,5155,4775,4425,4125,3845,3595,3365,3165,2975,279
910,568,0226,9926,4226,0575,8025,6135,4675,3515,2575,1785,1115,0555,0054,9624,9244,8904,8604,8334,8084,7864,7654,7464,729
1010,047,5596,5525,9945,6365,3865,2005,0574,9424,8494,7724,7064,6504,6014,5584,5204,4874,4574,4304,4054,3834,3634,3444,327
119,6467,2066,2175,6685,3165,0694,8864,7444,6324,5394,4624,3974,3424,2934,2514,2134,1804,1504,1234,0994,0774,0574,0384,021
129,3306,9275,9535,4125,0644,8214,6404,4994,3884,2964,2204,1554,1004,0524,0103,9723,9393,9093,8833,8583,8363,8163,7983,780
139,0746,7015,7395,2054,8624,6204,4414,3024,1914,1004,0253,9603,9053,8573,8153,7783,7453,7163,6893,6653,6433,6223,6043,587
148,8626,5155,5645,0354,6954,4564,2784,1404,0303,9393,8643,8003,7453,6983,6563,6193,5863,5563,5293,5053,4833,4633,4443,427
158,6836,3595,4174,8934,5564,3184,1424,0043,8953,8053,7303,6663,6123,5643,5223,4853,4523,4233,3963,3723,3503,3303,3113,294
168,5316,2265,2924,7734,4374,2024,0263,8903,7803,6913,6163,5533,4983,4513,4093,3723,3393,3103,2833,2593,2373,2163,1983,181
178,4006,1125,1854,6694,3364,1023,9273,7913,6823,5933,5193,4553,4013,3533,3123,2753,2423,2123,1863,1623,1393,1193,1013,084
188,2856,0135,0924,5794,2484,0153,8413,7053,5973,5083,4343,3713,3163,2693,2273,1903,1583,1283,1013,0773,0553,0353,0162,999
198,1855,9265,0104,5004,1713,9393,7653,6313,5233,4343,3603,2973,2423,1953,1533,1163,0843,0543,0273,0032,9812,9612,9422,925
208,0965,8494,9384,4314,1033,8713,6993,5643,4573,3683,2943,2313,1773,1303,0883,0513,0182,9892,9622,9382,9162,8952,8772,859
218,0175,7804,8744,3694,0423,8123,6403,5063,3983,3103,2363,1733,1193,0723,0302,9932,9602,9312,9042,8802,8572,8372,8182,801
227,9455,7194,8174,3133,9883,7583,5873,4533,3463,2583,1843,1213,0673,0192,9782,9412,9082,8792,8522,8272,8052,7852,7662,749
237,8815,6644,7654,2643,9393,7103,5393,4063,2993,2113,1373,0743,0202,9732,9312,8942,8612,8322,8052,7812,7582,7382,7192,702
247,8235,6144,7184,2183,8953,6673,4963,3633,2563,1683,0943,0322,9772,9302,8892,8522,8192,7892,7622,7382,7162,6952,6762,659
257,7705,5684,6754,1773,8553,6273,4573,3243,2173,1293,0562,9932,9392,8922,8502,8132,7802,7512,7242,6992,6772,6572,6382,620
267,7215,5264,6374,1403,8183,5913,4213,2883,1823,0943,0212,9582,9042,8572,8152,7782,7452,7152,6882,6642,6422,6212,6022,585
277,6775,4884,6014,1063,7853,5583,3883,2563,1493,0622,9882,9262,8712,8242,7832,7462,7132,6832,6562,6322,6092,5892,5702,552
287,6365,4534,5684,0743,7543,5283,3583,2263,1203,0322,9592,8962,8422,7952,7532,7162,6832,6532,6262,6022,5792,5592,5402,522
297,5985,4204,5384,0453,7253,4993,3303,1983,0923,0052,9312,8682,8142,7672,7262,6892,6562,6262,5992,5742,5522,5312,5122,495
307,5625,3904,5104,0183,6993,4733,3043,1733,0672,9792,9062,8432,7892,7422,7002,6632,6302,6002,5732,5492,5262,5062,4872,469
317,5305,3624,4843,9933,6753,4493,2813,1493,0432,9552,8822,8202,7652,7182,6772,6402,6062,5772,5502,5252,5022,4822,4632,445
327,4995,3364,4593,9693,6523,4273,2583,1273,0212,9342,8602,7982,7442,6962,6552,6182,5842,5552,5272,5032,4802,4602,4412,423
337,4715,3124,4373,9483,6303,4063,2383,1063,0002,9132,8402,7772,7232,6762,6342,5972,5642,5342,5072,4822,4602,4392,4202,402
347,4445,2894,4163,9273,6113,3863,2183,0872,9812,8942,8212,7582,7042,6572,6152,5782,5452,5152,4882,4632,4402,4202,4002,383
357,4195,2684,3963,9083,5923,3683,2003,0692,9632,8762,8032,7402,6862,6392,5972,5602,5272,4972,4702,4452,4222,4012,3822,364
407,3965,2484,3773,8903,5743,3513,1833,0522,9462,8592,7862,7232,6692,6222,5802,5432,5102,4802,4532,4282,4052,3842,3652,347
457,3735,2294,3603,8733,5583,3343,1673,0362,9302,8432,7702,7072,6532,6062,5642,5272,4942,4642,4372,4122,3892,3682,3492,331
507,3535,2114,3433,8583,5423,3193,1523,0212,9152,8282,7552,6922,6382,5912,5492,5122,4792,4492,4212,3972,3742,3532,3342,316
557,3335,1944,3273,8433,5283,3053,1373,0062,9012,8142,7412,6782,6242,5772,5352,4982,4652,4342,4072,3822,3602,3392,3192,302
607,3145,1794,3133,8283,5143,2913,1242,9932,8882,8012,7272,6652,6112,5632,5222,4842,4512,4212,3942,3692,3462,3252,3062,288
707,2965,1634,2993,8153,5013,2783,1112,9802,8752,7882,7152,6522,5982,5512,5092,4722,4382,4082,3812,3562,3332,3122,2932,275
807,2805,1494,2853,8023,4883,2663,0992,9682,8632,7762,7032,6402,5862,5392,4972,4602,4262,3962,3692,3442,3212,3002,2812,263
907,2645,1364,2733,7903,4763,2543,0872,9572,8512,7642,6912,6292,5752,5272,4852,4482,4152,3852,3572,3322,3102,2892,2692,251
1007,2485,1234,2613,7783,4653,2433,0762,9462,8402,7542,6802,6182,5642,5162,4752,4372,4042,3742,3462,3212,2992,2782,2582,240
1207,2345,1104,2493,7673,4543,2323,0662,9352,8302,7432,6702,6082,5532,5062,4642,4272,3932,3632,3362,3112,2882,2672,2482,230
1507,2205,0994,2383,7573,4443,2223,0562,9252,8202,7332,6602,5982,5442,4962,4542,4172,3842,3532,3262,3012,2782,2572,2382,220
2007,2075,0874,2283,7473,4343,2133,0462,9162,8112,7242,6512,5882,5342,4872,4452,4082,3742,3442,3162,2912,2682,2472,2282,210
3007,1945,0774,2183,7373,4253,2043,0372,9072,8022,7152,6422,5792,5252,4782,4362,3992,3652,3352,3072,2822,2592,2382,2192,201
4007,1825,0664,2083,7283,4163,1953,0282,8982,7932,7062,6332,5712,5172,4692,4272,3902,3562,3262,2992,2742,2512,2292,2102,192
5007,1715,0574,1993,7203,4083,1863,0202,8902,7852,6982,6252,5622,5082,4612,4192,3822,3482,3182,2902,2652,2422,2212,2022,183
1000007,1595,0474,1913,7113,4003,1783,0122,8822,7772,6902,6172,5552,5002,4532,4112,3742,3402,3102,2822,2572,2342,2132,1942,175

Einzelnachweise

  1. Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 383388, doi:10.1515/9783110215274.
  2. Ulrich Krengel: Einführung in die Wahrscheinlichkeitstheorie und Statistik. Für Studium, Berufspraxis und Lehramt. 8. Auflage. Vieweg, Wiesbaden 2005, ISBN 3-8348-0063-5, S. 246250, doi:10.1007/978-3-663-09885-0.
  3. David Meintrup, Stefan Schäffler: Stochastik. Theorie und Anwendungen. Springer-Verlag, Berlin Heidelberg New York 2005, ISBN 3-540-21676-6, S. 577579, doi:10.1007/b137972.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.