Nilpotente Gruppe

Nilpotente Gruppe i​st ein Begriff a​us dem Bereich d​er Gruppentheorie, e​inem Teilgebiet d​er Mathematik. In gewissem Sinn verallgemeinert e​r für endliche Gruppen d​en Begriff d​er kommutativen Gruppe „so w​enig wie möglich“: Jede kommutative Gruppe i​st nilpotent, a​ber nicht umgekehrt. Endliche kommutative Gruppen lassen s​ich (bis a​uf Isomorphie) eindeutig a​ls direktes Produkt v​on endlich vielen zyklischen Gruppen v​on Primzahlpotenzordnung darstellen. Dies i​st eine Aussage d​es Hauptsatzes über endlich erzeugte abelsche Gruppen. Bei endlichen nilpotenten Gruppen übernehmen d​ie p-Sylowgruppen d​ie Rolle d​er zyklischen Gruppen: Jede endliche nilpotente Gruppe i​st (bis a​uf Isomorphie) e​in direktes Produkt i​hrer p-Sylowgruppen. Die Definition d​es Begriffs „nilpotente Gruppe“ beruht a​uf dem allgemeineren Konzept e​iner Kette v​on Untergruppen (mit bestimmten Eigenschaften), d​as im Artikel „Reihe (Gruppentheorie)“ erläutert wird.

Charakterisierungen

Für nilpotente Gruppen lassen s​ich diverse äquivalente Charakterisierungen angeben. Sie werden o​ft über d​ie Betrachtung bestimmter Reihen eingeführt. Definiere für e​ine Gruppe d​ie Kommutatoren induktiv

für .

Man erhält dadurch d​ie absteigende Zentralreihe

.

Man nennt nilpotent, falls die absteigende Zentralreihe für ein bei der Einsgruppe endet.

Ähnlich kann man für das -te Zentrum induktiv wie folgt definieren.

,
ist das Urbild von .

Damit i​st

eine aufsteigende Reihe; die aufsteigende Zentralreihe. Man kann zeigen, dass genau dann nilpotent im obigen Sinne ist, falls diese Reihe bis zu ganz aufsteigt und dass die Längen beider Ketten gleich sind, was zur Definition der Nilpotenzklasse (auch Nilpotenzgrad) führt. Der Nilpotenzgrad ist genau die gemeinsame Länge dieser beiden Reihen.[1]

Für endliche Gruppen gelten folgende Charakterisierungen:[2]

  • Alle -Sylowuntergruppen sind normal in . Insbesondere ist direktes Produkt ihrer -Sylowuntergruppen.
  • Für Primzahlen sind Produkte von -Elementen wieder -Elemente.
  • Jede Untergruppe von ist subnormal.
  • Für verschiedene Primzahlen und sind die Kommutatoren von -Elementen mit -Elementen gleich dem neutralen Element.
  • Ist eine echte Untergruppe von , so ist echt in ihrem Normalisator enthalten.
  • Ist eine maximale Untergruppe, so ist normal in .

Eigenschaften

  • Untergruppen, Faktorgruppen und homomorphe Bilder einer nilpotenten Gruppe sind nilpotent.
  • Ist umgekehrt ein nilpotenter Normalteiler und ebenfalls nilpotent, so ist im Allgemeinen nicht nilpotent. Ein Beispiel ist die nicht nilpotente Gruppe S3, die einen zur zyklischen und damit nilpotenten Gruppe isomorphen Normalteiler besitzt, dessen Faktorgruppe ebenfalls nilpotent ist. Es gilt aber der folgende Satz:
  • Philip Hall: Ist eine Gruppe mit einem nilpotenten Normalteiler , so dass nilpotent ist, so ist auch nilpotent.[3] Dabei ist die Kommutatorgruppe von .
  • Jede nilpotente Gruppe ist auflösbar. Die Umkehrung ist im Allgemeinen falsch, wie die symmetrische Gruppe S3 belegt.
  • Endlich erzeugte nilpotente Gruppen sind überauflösbar, auch hier gilt die Umkehrung nicht.
  • Produkte nilpotenter Normalteiler in einer Gruppe sind nilpotent. Diese Eigenschaft führt zur Definition der Fitting-Untergruppe, (nach Hans Fitting) dem Produkt aller nilpotenten Normalteiler.

Klassifikation

  • Das direkte Produkt nilpotenter Gruppen ist nilpotent, falls die Nilpotenzgrade der Faktoren beschränkt sind.
  • Jede endliche p-Gruppe ist nilpotent. Eine unendliche p-Gruppe ist nilpotent, wenn die Ordnung der Gruppenelemente beschränkt ist. (Beachte, dass diese Forderung stärker ist, als die Forderung endlicher Ordnung für Gruppenelemente, die durch die Definition der p-Gruppe ohnehin gewährleistet ist.)
  • Eine endliche nilpotente Gruppe ist isomorph zum direkten Produkt ihrer p-Sylow-Untergruppen. Man beachte dabei, dass jede nilpotente Gruppe zu jeder Primzahl p genau eine (ggf. triviale) p-Sylow-Untergruppe besitzt.

Beispiele

  • Eine nicht triviale Gruppe ist genau dann nilpotent vom Nilpotenzgrad 1, wenn sie abelsch ist.
  • Es sei ein Körper und eine natürliche Zahl. Die Menge der n×n-Matrizen der Form
(dabei stehen die Sterne für beliebige Elemente von )
ist eine Untergruppe der Gruppe der invertierbaren n×n-Matrizen, die Gruppe der strikten oberen Dreiecksmatrizen. Sie ist nilpotent mit Nilpotenzgrad .
Im Spezialfall , trägt diese Gruppe auch den Namen Heisenberggruppe.
  • Die Diedergruppe mit Elementen ist genau dann nilpotent, wenn gilt; in diesem Fall ist der Nilpotenzgrad gleich .
  • Die Frattinigruppe ist stets nilpotent und falls nilpotent, dann auch .[4]

Literatur

  • Thomas W. Hungerford: Algebra (= Graduate Texts in Mathematics. Bd. 73). 5th printing. Springer, New York NY u. a. 1989, ISBN 0-387-90518-9.

Einzelnachweise

  1. Michael Aschbacher: Finite group theory, Cambridge Studies in Advanced Mathematics, Band 10, 2te Auflage, Cambridge University Press (2000), ISBN 0-521-78145-0, S. 28–29.
  2. D.J.S. Robinson: A Course in the Theory of Groups, Springer-Verlag 1996, ISBN 0-387-94461-3, Satz 5.2.4
  3. D.J.S. Robinson: A Course in the Theory of Groups, Springer-Verlag 1996, ISBN 0-387-94461-3, Satz 5.2.10
  4. Hans Kurzweil, Bernd Stellmacher: The theory of finite groups. An introduction. Springer, New York u. a. 2004, ISBN 0-387-40510-0, S. 105.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.