Idempotenz

Idempotenz ist eine Bezeichnung aus der Mathematik und Informatik. In der Mathematik bezeichnet man ein Objekt , das mit einer Verknüpfung die Eigenschaft hat, als idempotent bezüglich dieser Verknüpfung. Ein wichtiger Spezialfall sind idempotente Funktionen bezüglich der Hintereinanderausführung. Analog dazu wird in der Informatik ein Stück Programmcode, das mehrfach hintereinander ausgeführt das gleiche Ergebnis wie bei einer einzigen Ausführung liefert, als idempotent bezeichnet.

Definitionen

Idempotente Elemente

Ein Element einer Menge heißt idempotent bezüglich einer -stelligen Verknüpfung und falls gilt:

Falls ist und die Verknüpfung (wie etwa bei der Multiplikation in Ringen üblich) in Potenzschreibweise notiert wird, schreibt sich die Bedingung als

woraus unmittelbar

für alle

folgt, w​as die Bezeichnung Idempotenz (lat. für gleiche Potenz) erklärt.

Erfüllt dagegen für eine einstellige Verknüpfung die Gleichung

dann ist ein Fixpunkt von

Idempotente Funktionen

Man nennt eine einstellige Verknüpfung oder Funktion idempotent, wenn sie bezüglich der Komposition idempotent ist:

d. h., für alle ergibt eine zweimalige Anwendung von den gleichen Wert wie die einmalige: .

Idempotente algebraische Strukturen

Sind alle Elemente einer Halbgruppe (oder allgemeiner eines Magmas) idempotent bezüglich , dann wird auch selbst idempotent genannt. Alternativ wird eine idempotente Halbgruppe auch oft als ein Band bezeichnet.[1][2] Jedes kommutative Band heißt Halbverband. Man nennt eine Halbgruppe global idempotent, falls gilt:

mit .

Einen Halbring einen Fastring sowie einen Ring bezeichnet man als idempotent, falls jeweils bzw. idempotent ist. Im Gegensatz dazu ist ein Dioid ein Hemiring mit Einselement und idempotenter Addition.

Beispiele

Idempotente Verknüpfungen:

  • Bezüglich der Multiplikation sind die Lösungen und der Gleichung die einzigen idempotenten reellen Zahlen.
  • Bezüglich einer zweistelligen Verknüpfung ist ein (links- oder rechts-)neutrales Element stets idempotent: In einer Gruppe ist das neutrale Element das einzige idempotente Element.
  • In einem Ring mit Eins sind und stets idempotente Elemente bezüglich der Multiplikation. Falls der Ring nicht nullteilerfrei ist, können auch noch weitere idempotente Elemente existieren. Beispielsweise gilt im Restklassenring
und .
  • In einem Verband sind alle Elemente idempotent bezüglich der Verknüpfungen und . D.h. es gilt stets und . Entsprechendes gilt für die Halbverbände und .
  • Absorbierende Elemente sind immer idempotent.

Idempotente Abbildungen:

  • Konstante Funktionen:
  • Identische Abbildung:
  • , wenn
  • Projektionen, z. B.
  • Betragsfunktionen:
  • Hüllenoperatoren.
  • Kernoperatoren.

Eigenschaften

idempotent ist. Insbesondere ist diagonalisierbar und alle Eigenwerte von sind oder . Geometrisch können idempotente lineare Abbildungen als Projektion des Vektorraums auf einen Untervektorraum interpretiert werden.
  • Jeder idempotente Ring ist kommutativ, denn es gilt für alle
(zweite und fünfte Gleichung wegen der Idempotenz, dritte und vierte Gleichung wegen der Distributivität), also
Damit gilt auch, indem man und setzt und wiederum die Idempotenz nutzt,
Folglich ist
Insbesondere gilt auch (wegen der Idempotenz und wegen (1) mit )
bzw.
  • Ein idempotenter Fastring ist genau dann kommutativ, wenn er distributiv ist, denn:
Falls kommutativ ist, gilt für alle
Ist hingegen distributiv, so folgt daraus genau so wie bei einem idempotenten Ring die Kommutativität.

Informatik

In d​er Informatik w​ird Idempotenz v​on Recovery-Maßnahmen b​ei Datenbanken u​nd Diensten gefordert, u​m Fehlertoleranz b​ei einem Absturz während e​iner Wiederanlaufphase z​u gewährleisten. Undo- u​nd Redo-Operationen müssen h​ier auch b​ei mehrfacher Hintereinanderausführung dasselbe Resultat z​ur Folge haben.

Rein lesende Services s​ind von Natur a​us idempotent, d​a der Zustand d​er Daten n​icht geändert wird. Jeder n​icht idempotente schreibende Service k​ann zu e​inem idempotenten Service gemacht werden.

Beispiel

Bei e​inem Service z​um Verbuchen v​on Geldbeträgen i​st der Aufruf einzahlen(100) n​icht idempotent, d​a bei mehrmaligem Service-Aufruf d​er Betrag 100 mehrmals eingezahlt wird. Würde m​an hingegen neuerKontostand(600) aufrufen, s​o würde b​ei mehrmaligem Service-Aufruf d​er Kontostand gleich bleiben. Dieser Aufruf wäre idempotent.

Siehe auch

Literatur

  • Jeremy Gunawardena: An introduction to idempotency in J. Gunawardena (Hrsg.): Idempotency, Cambridge University Press, 1998, ISBN 0-521-55344-X, S. 1–49 (englisch; Vorabveröffentlichung online, PDF-Datei, 414 kB)
  • Munindar Paul Singh, Michael N. Huhns: Service-oriented Computing: Semantics, Processes, Agents. Wiley 2005, ISBN 0470091487, S. 54 (Auszug in der Google-Buchsuche)

Einzelnachweise

  1. L. N. Shevrin: Semi-group of Idempotents. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 978-1-55608-010-4 (englisch, online).
  2. Günther Eisenreich, Ralf Sube: Langenscheidts Fachwörterbuch Mathematik. Langenscheidt 1996, ISBN 3861170744, S. 381 (Auszug in der Google-Buchsuche)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.