Gestoppter Prozess

Ein gestoppter Prozess i​st in d​er Wahrscheinlichkeitstheorie e​in spezieller stochastischer Prozess, d​er zu e​inem gewissen zufälligen Zeitpunkt angehalten wird. Formal geschieht d​ies durch e​ine Stoppzeit. Gestoppte Prozesse werden beispielsweise b​ei der Untersuchung v​on Spielabbruchstrategien verwendet. Dort entspricht d​as Stoppen d​es Prozesses d​em Spielabbruch. Eine theoretischere Anwendung finden gestoppte Prozesse b​ei der Lokalisierung v​on Prozessklassen, d​urch die beispielsweise d​ie Martingale u​m die lokalen Martingale erweitert werden.

Definition

Gegeben sei ein stochastischer Prozess mit höchstens abzählbarer Indexmenge und eine Stoppzeit mit Werten in . Dann heißt der Prozess

der gestoppte Prozess bezüglich . Dabei ist

Rein formell wird der Prozess also nicht angehalten, sondern er verändert seinen Wert nach dem Zeitpunkt nicht mehr.

Erläuterung

Ist ein stochastischer Prozess gegeben, so entsteht der gestoppte Prozess wie folgt:

  • Es ist , da im nullten Zeitschritt ein Anhalten des Prozesses keinen Unterschied macht.
  • Im ersten Zeitschritt bleibt der Prozess auf der Menge angehalten, verhält sich ansonsten aber wie der ursprüngliche Prozess, es ist also
.
  • Im zweiten Zeitschritt bleibt der gestoppte Prozess auf der Menge weiterhin unverändert, wird aber zusätzlich noch auf der Menge angehalten. Somit ist
.
  • Somit ist die n-te Zufallsvariable im gestoppten Prozess gegeben durch
.

Betrachtet man einen gestoppten Prozess nur auf der Menge für ein , so verhält er sich auf dieser Menge bis zum k-ten Schritt wie der eigentliche Prozess und verändert danach seine Werte nicht mehr.

Bemerkung

Der gestoppte Prozess sollte nicht mit der „gesampelten“ Zufallsvariable

eines stochastischen Prozesses verwechselt werden, insbesondere da die Notation in der Literatur nicht eindeutig ist.

Aussagen über gestoppte Prozesse

Zu d​en wichtigsten Aussagen über gestoppte Prozesse gehören d​as Optional Stopping Theorem u​nd das Optional Sampling Theorem. Sie untersuchen, w​ie sich gestoppte (Sub-/Super-)Martingale verhalten u​nd welche Aussagen m​an über d​ie Erwartungswerte d​er gestoppten Prozesse treffen kann.

Literatur

  • Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-3.
  • David Meintrup, Stefan Schäffler: Stochastik. Theorie und Anwendungen. Springer-Verlag, Berlin Heidelberg New York 2005, ISBN 978-3-540-21676-6, doi:10.1007/b137972.
  • Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-45386-1, doi:10.1007/978-3-642-45387-8.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.