BDF-Verfahren

Die BDF-Verfahren (englisch Backward Differentiation Formulas) s​ind lineare Mehrschrittverfahren z​ur numerischen Lösung v​on Anfangswertproblemen gewöhnlicher Differentialgleichungen:

.

Dabei wird für eine Näherungslösung an den Zwischenstellen berechnet:

.

Die Verfahren wurden 1952 v​on Charles Francis Curtiss u​nd Joseph Oakland Hirschfelder eingeführt u​nd sind s​eit dem Erscheinen d​er Arbeiten v​on C. William Gear 1971 a​ls Löser für steife Anfangswertprobleme w​eit verbreitet.

Beschreibung

Im Gegensatz zu Adams-Moulton-Verfahren wird bei BDF-Verfahren nicht die rechte Seite durch ein Interpolationspolynom approximiert, stattdessen konstruiert man ein Polynom mit (maximalem) Grad , welches die letzten Approximationen an die Lösung sowie den unbekannten Wert interpoliert:

.

Zusätzlich fordert man, dass das Interpolationspolynom die gegebene Differentialgleichung im Punkt löst, also dass gilt

,

und erhält so ein nichtlineares Gleichungssystem für die Bestimmung des implizit gegebenen Wertes .

Lagrange-Darstellung

Eine Möglichkeit für die Darstellung des Interpolationspolynoms ist die Lagrange-Darstellung. Dabei sind die Lagrange-Basispolynome mit den Stützstellen definiert durch

wobei das Kronecker-Delta ist. Damit folgt wegen direkt die Darstellung

.

Mit der Forderung erhält man nun die lineare Rekursionsformel für die BDF-Verfahren:

,

wobei die Koeffizienten gegeben sind durch

.

Alternative Lagrange-Darstellung

Alternativ betrachten w​ir die Lagrange-Basispolynome definiert durch

Damit f​olgt die Darstellung

.

Dabei ist der Abstand der Stützstellen und die konstante Schrittweite des Verfahrens. Mit der Forderung , wobei hier

gilt, erhält man nun für die Berechnung der Koeffizienten

und d​amit die Rekursionsformel

Newton-Darstellung

Die Newton-Darstellung des Interpolationspolynoms verwendet Rückwärtsdifferenzen, welche rekursiv definiert sind durch

Damit lässt sich schreiben als

.

Diese Formel führt wegen für auf die Darstellung

der BDF-Verfahren.

Berechnungsformeln

Alle oben betrachteten Darstellungen der Berechnungsformeln sind äquivalent, da sie nur verschiedene Arten der Darstellung des eindeutigen Interpolationspolynoms verwendet haben. Für lauten die impliziten Berechnungsformeln der BDF(k)-Verfahren:

  • BDF(1) – implizites Euler-Verfahren:
  • BDF(2):
  • BDF(3):
  • BDF(4):
  • BDF(5):
  • BDF(6):

Eigenschaften

Die BDF-Verfahren sind alle implizit, da der unbekannte Wert in die Gleichung eingeht. BDF(k) besitzt genau die Konsistenzordnung k. Das Verfahren BDF(1) ist das implizite Euler-Verfahren. Dieses und BDF(2) sind A-stabil, die Verfahren höherer Ordnung A()-stabil, wobei der Öffnungswinkel sich mit höherer Ordnung verkleinert. Insbesondere BDF(2) ist aufgrund seiner optimalen Eigenschaften bezüglich der zweiten Dahlquist-Barriere bei der Berechnung steifer Differentialgleichungen sehr beliebt. Für k<6 sind die Verfahren stabil und konsistent und damit auch konvergent. Der größte Anreiz der BDF-Verfahren sind ihre großen Stabilitätsgebiete, weshalb sie sich für den Einsatz bei der Lösung von steifen Anfangswertproblemen eignen. Für k>6 sind die Verfahren instabil.

Literatur

  • E. Hairer, Syvert P. Nørsett, Gerhard Wanner: Solving Ordinary Differential Equations I, Nonstiff Problems, Springer Verlag, ISBN 3-540-56670-8
  • E. Hairer, G. Wanner: Solving Ordinary Differential Equations II, Stiff problems, Springer Verlag, ISBN 3-540-60452-9
  • H.R. Schwarz, N. Köckler: Numerische Mathematik, Teubner (2004)
  • Curtiss, Hirschfelder Integration of stiff equations, Proc. Nat. Acad. Sci. U.S.A., Band 38, 1952, 235–243.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.