Änderungsrate

Die Änderungsrate einer zeitabhängigen Größe beschreibt das Ausmaß der Veränderung von über einen bestimmten Zeitraum im Verhältnis zur Dauer dieses Zeitraums. Anschaulich gesprochen, ist sie ein Maß dafür, wie schnell sich die Größe ändert. Durch den Bezug auf die Zeitdauer enthält die Maßeinheit im Nenner eine Zeiteinheit; im Zähler steht eine Einheit von . Wird die Änderung auch auf die Größe selbst bezogen, spricht man von einer relativen Änderungs- oder Wachstumsrate.

Man unterscheidet z​udem die mittlere Änderungsrate zwischen z​wei Messungen u​nd die momentane (auch lokale) Änderungsrate a​ls abstrakte Größe e​iner Modellvorstellung.

Berechnung und Verwendung

Mittlere Änderungsrate

Die mittlere Änderungsrate ist die durchschnittliche Änderung einer zeitabhängigen Messgröße zwischen zwei Zeitpunkten und , also im Zeitraum . Berechnet wird sie als Quotient aus der Differenz der beiden Werte zu diesen Zeitpunkten und der Dauer des Zeitraums:

Im Zeit-Größen-Diagramm (Funktionsgraph, Schaubild) von ist die mittlere Änderungsrate zwischen und die Steigung der Sekante durch die Punkte und auf dem Diagramm.

Momentane Änderungsrate

Die momentane Änderungsrate ist die auf einen „Moment“ (sehr kurzen Zeitraum) bezogene Veränderung einer Messgröße . Sie kann mathematisch als Ergebnis des Grenzprozesses

als Ableitung ihrer Zeit--Funktion dargestellt werden.

Für zeitlineare Änderungen i​st die momentane Änderungsrate konstant gleich d​er mittleren Änderungsrate.

Änderungsraten in weiterem Sinn

Werden die Begriffe im übertragenen Sinn für Größen verwendet, die von einem anderen Parameter als der Zeit abhängen, so ist:[1]

  • die mittlere Änderungsrate gleichbedeutend mit dem Differenzenquotienten
  • die momentane Änderungsrate gleichbedeutend mit dem Differentialquotienten

Ist der Parameter eine vektorielle Größe, so wird statt des Begriffs „Rate“ auch der Begriff „Gradient“ verwendet, etwa Temperaturgradient oder Luftdruckgradient.

Beispiele

  • Bei einer geradlinigen Bewegung ist die Geschwindigkeit die momentane Änderungsrate der Zeit-Weg-Funktion . Der Artikel Geschwindigkeit macht im Abschnitt Definition der Geschwindigkeit den Unterschied von mittlerer und momentaner Änderungsrate deutlich.
  • Die Steigleistung eines Luftfahrzeuges gibt an, wie viel Höhe in einer bestimmten Zeit gewonnen werden kann.

Literatur

  • Harro Heuser: Lehrbuch der Analysis Teil 1. 5. Auflage. Teubner-Verlag, 1988, ISBN 3-519-42221-2
  • Christian Gerthsen, Hans O. Kneser, Helmut Vogel: Physik: ein Lehrbuch zum Gebrauch neben Vorlesungen. 16. Auflage. Springer-Verlag, 1992, ISBN 3-540-51196-2

Anmerkungen

  1. Helga Lohöfer: Tabelle der üblichen Änderungsbegriffe für Variable und Funktionen. Skript zur Übung Mathematische und statistische Methoden für Pharmazeuten, Universität Marburg. 2006.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.