Wachstumsrate

Als Wachstumsrate bezeichnet m​an die relative Zunahme e​iner Größe i​n einem Zeitraum (einer Periode) o​der auch, b​ei Betrachtung mehrerer Perioden, d​ie mittlere relative Zunahme e​iner Größe p​ro Zeitspanne.

Oft wird hierbei ein Exponentielles Wachstum angenommen. Statt mit der Wachstumsrate wird dann meist mit dem Wachstumsfaktor gerechnet. Eine Wachstumsrate von 23 % (also ) entspricht dem Wachstumsfaktor .

Definition

Die diskrete Wachstumsrate ist die Änderung einer von der Zeit abhängigen Größe zwischen zwei Zeitpunkten und relativ zu ihrem Ausgangswert :

.

Verkürzt man die Periode immer mehr hin zu ihrem Anfangszeitpunkt, bildet man also den Grenzwert, dann erhält man die stetige Wachstumsrate zu diesem Zeitpunkt. Sie ist die momentane Änderung der Größe zu einem konkreten Zeitpunkt relativ zu ihrem Wert zu diesem Zeitpunkt.

Die mittlere diskrete Wachstumsrate über mehrere Zeitspannen w​ird durch d​ie allgemeine Gleichung

ausgedrückt, wobei die Anzahl der Zeitspannen zwischen und und die betrachtete Größe zum jeweiligen Zeitpunkt darstellt. Hierbei handelt es sich um die Wachstumsrate aus dem geometrischen Mittel der Wachstumsfaktoren der einzelnen Perioden.

Jährliche Wachstumsrate (Compound Annual Growth Rate)

Eine spezielle Wachstumsrate i​st die jährliche Wachstumsrate (engl. Compound Annual Growth Rate, abgekürzt CAGR), e​ine wesentliche Kennziffer z​ur Betrachtung v​on Investitionen, Marktentwicklungen, Umsätzen etc. i​n der Betriebswirtschaft u​nd in d​er Volkswirtschaft. Die CAGR stellt d​as durchschnittliche jährliche Wachstum e​iner zu betrachtenden Größe dar.

Zur Berechnung wird der aktuelle Wert durch den Ausgangswert geteilt. Von dem Ergebnis wird die -te Wurzel gezogen, wobei die Anzahl der Jahre ist, die betrachtet werden. Die Compound Annual Growth Rate stellt also den mittleren Prozentsatz dar, um den der Anfangswert einer Zeitreihe auf hypothetische Folgewerte für die Berichtsjahre wächst, bis der tatsächliche Endwert am Ende der Berichtsperiode erreicht ist. Tatsächliche Ausschläge der Folgejahre in der Zwischenzeit wirken sich dabei nicht aus, die Wachstumsrate ist konstant.

Die Formel für die CAGR ist dieselbe wie die der Wachstumsrate, wobei bei CAGR die Größe als Anzahl von Jahren ausgedrückt wird.

Beispiel: Eine Firma erzielt im Jahr 2004 einen Umsatz von 1 Million €. Im Jahr 2006 beträgt der Umsatz 1,21 Millionen €. Die Anzahl der Zeiteinheiten beträgt 2006–2004 = 2.

Die jährliche Wachstumsrate beträgt 10 %. Wenn m​an daher d​en Ausgangswert zweimal m​it dem entsprechenden Wachstumsfaktor 1,1 multipliziert, erhält m​an den Endwert:

Spezifische Wachstumsrate in der Biotechnologie

Bei exponentiellem Wachstum ist die Geschwindigkeit der Veränderung der Zellmasse () zu jedem Zeitpunkt proportional zur Zellmasse . Die Proportionalitätskonstante wird als spezifische Wachstumsrate bezeichnet:[1]

Andere z​ur Beschreibung v​on Fermentationsprozessen benutzte Kenngrößen s​ind die spezifische Produktbildungsrate u​nd der spezifische Substratverbrauch.

Beziehung zur Wachstumskonstanten λ

Wird zur mathematischen Beschreibung des Exponentiellen Wachstums einer zeitabhängigen Größe eine Funktion der Form

mit einer explizit aufgeführten Zinsperiode (z. B. ) verwendet, so kann die Periodendauer in die Wachstumskonstante umgerechnet werden:

Da die Wachstumsrate und der Wachstumsfaktor dimensionslose Zahlen sind, hat die Wachstumskonstante die Dimension einer Frequenz. Die Zahl im Exponenten kann ebenfalls als Rate bezeichnet werden, da sie bei kleinen Wachstumsraten unterhalb von 10 % annähernd gleich ist:

Einzelnachweise

  1. Hans-Dieter Jakubke, Ruth Karcher (Koordinatoren): Lexikon der Chemie in drei Bänden, Spektrum Verlag, Band 3, Heidelberg 1999, ISBN 3-8274-0381-2, S. 257.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.