Unüberwachtes Lernen

Unüberwachtes Lernen (englisch unsupervised learning) bezeichnet maschinelles Lernen ohne im Voraus bekannte Zielwerte sowie ohne Belohnung durch die Umwelt. Die (Lern-)Maschine versucht, in den Eingabedaten Muster zu erkennen, die vom strukturlosen Rauschen abweichen.[1] Ein Künstliches neuronales Netz orientiert sich an der Ähnlichkeit zu den Inputwerten und adaptiert die Gewichte entsprechend. Es können verschiedene Dinge gelernt werden. Beliebt sind die automatische Segmentierung (Clustering) oder die Komprimierung von Daten zur Dimensionsreduktion.

Beteilige dich an der Diskussion!
Dieser Artikel wurde wegen inhaltlicher Mängel auf der Qualitätssicherungsseite der Redaktion Informatik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Informatik auf ein akzeptables Niveau zu bringen. Hilf mit, die inhaltlichen Mängel dieses Artikels zu beseitigen, und beteilige dich an der Diskussion! (+)

Segmentierung

Hier werden ähnliche Muster d​urch eine Segmentierung a​uf ähnliche Segmente abgebildet.

Ein sehr vereinfachtes Beispiel: Man stelle sich verschiedene Früchte vor (Äpfel, Birnen, Erdbeeren, Orangen), die alle in einem gemeinsamen Korb liegen. Der Korb beinhaltet also die Menge der zu „segmentierenden“ Daten. Nun ist eine Frucht wahllos herauszunehmen. Danach sind Ähnlichkeiten mit den bereits auf dem Boden vorhandenen Früchten zu suchen. Wenn etwas Passendes gefunden wurde, soll die Frucht dazugelegt werden. Wenn nicht, dann legt man sie irgendwo hin, wo Platz ist. Damit ist solange fortzufahren, bis alle Früchte gemäß ihren Eigenschaften (Aussehen, Geruch, Farbe, Geschmack etc.) „segmentiert“ wurden. Auf dem Boden liegen jetzt verschiedene Haufen von Früchten, mal größer, kleiner oder gleich je nach Häufigkeit des Auftretens. Das sind praktisch gesehen die Cluster.

Komprimierung

Hierbei wird versucht, viele Eingabewerte in einer kompakteren Form zu repräsentieren, wobei möglichst wenig Information verloren gehen soll. Die Hauptkomponentenanalyse kann zum Beispiel als Komprimierverfahren verstanden werden, wenn die unwichtigsten Komponenten der Daten weggelassen werden.
Das entspricht praktisch einem linearen Autoencoder; dies ist ein mehrschichtiges künstliches neuronales Netz, dessen Zielwerte die Eingabewerte sind, wobei eine versteckte Schicht mit weniger Knoten als Eingabewerte als „Flaschenhals“ dient. Die Aktivierungen dieser Neuronen sind die komprimierten Daten, aus denen dann möglichst gut die ursprünglichen Daten wieder rekonstruiert (dekomprimiert) werden sollen.

Siehe auch

Literatur

  • Geoffrey Hinton, Terrence J. Sejnowski (Hrsg.): Unsupervised Learning: Foundations of Neural Computation. MIT Press, 1999, ISBN 0-262-58168-X (englisch).
  • Richard O. Duda, Peter E. Hart, David G. Stork: Pattern classification (2nd edition). Wiley, New York 2001, ISBN 0-471-05669-3, Unsupervised Learning and Clustering, S. 571 (englisch).

Einzelnachweise

  1. Zoubin Ghahramani: Unsupervised Learning. (pdf) In: Advanced Lectures on Machine Learning. 3176, 16. September 2004, S. 72–112. doi:10.1007/978-3-540-28650-9_5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.