Ultrafilter

Ein Ultrafilter ist in der Mathematik ein Mengenfilter auf einer Menge , so dass für jede Teilmenge von entweder selbst oder ihr Komplement Element des Mengenfilters ist. Ultrafilter sind somit genau diejenigen Mengenfilter, zu denen keine echte Verfeinerung existiert. Diese Definition von Ultrafiltern lässt sich von Mengenfiltern auf allgemeine Filter im Sinne der Verbandstheorie übertragen.

Ultrafilter m​it der Eigenschaft, d​ass die Schnittmenge a​ller ihrer Elemente nichtleer ist, heißen fixierte Ultrafilter, Punktfilter o​der Elementarfilter: Sie bestehen a​us allen Teilmengen, d​ie einen bestimmten Punkt enthalten. Alle Ultrafilter a​uf endlichen Mengen s​ind fixierte Ultrafilter. Fixierte Filter s​ind die einzigen explizit konstruierbaren Ultrafilter. Die zweite Art d​er Ultrafilter s​ind die freien Ultrafilter, für d​ie die Schnittmenge a​ller ihrer Elemente d​ie leere Menge ist.

Ultrafilter finden Anwendungen e​twa in d​er Topologie u​nd der Modelltheorie.

Der z​um Begriff d​es Ultrafilters duale Begriff i​st der d​es Primideals.[1]

Formale Definition und grundlegende Eigenschaften

Es sei eine Menge. Ein Filter ist eine Familie von Teilmengen auf mit folgenden Eigenschaften:

Ein Ultrafilter ist ein Filter mit der Eigenschaft:

  1. Ist Filter auf mit , dann gilt .

Dieser Punkt kann auch so ausgedrückt werden, dass in der Menge aller Filter auf maximal ist, wobei als Ordnung die Inklusion auf , also auf der Potenzmenge der Potenzmenge von , verwendet wird. (Beachte: Ein Filter ist eine Teilmenge von und daher ein Element von .)

Es gilt folgender Satz: Ist ein Filter auf der Menge , dann existiert ein Ultrafilter , der den Filter umfasst. Da ein Filter auf der Menge ist, existiert auf jeder nichtleeren Menge ein Ultrafilter.

Ultrafilter lassen s​ich durch folgenden Satz charakterisieren:

Es sei ein Filter auf . Dann sind folgende Aussagen äquivalent (L1):

  1. Für alle Filter auf mit folgt .
  2. Für alle Teilmengen gilt: oder .
  3. gilt, dass entweder oder .

Des Weiteren gilt: Sind Ultrafilter auf einer Menge , dann sind diese gleichmächtig. Dies sieht man durch folgende Abbildungen ein:

sowie

Zuerst sieht man, dass die Abbildungen, wegen (L1) wohldefiniert sind. Man sieht sofort und . Somit handelt es sich um Bijektionen.

Vollständigkeit

Unter der Vollständigkeit eines Ultrafilters versteht man die kleinste Kardinalzahl , sodass Elemente des Filters existieren, deren Durchschnitt kein Element des Filters ist. Dies widerspricht nicht der Definition eines Ultrafilters, da nach dieser nur der Durchschnitt endlich vieler Elemente wieder im Filter enthalten sein muss. Aus dieser Voraussetzung folgt aber, dass die Vollständigkeit eines Ultrafilters mindestens ist. Ein Ultrafilter, dessen Vollständigkeit größer als ist, also überabzählbar, heißt abzählbar vollständig bzw. -vollständig, da jede Schnittmenge abzählbar (auch abzählbar unendlich) vieler Elemente des Filters wieder ein Element des Filters ist.

Verallgemeinerung von Ultrafiltern auf Halbordnungen

Im Kontext der allgemeineren Definition von Filter als Teilmenge einer halbgeordneten Menge (zum Beispiel Potenzmenge mit Inklusion) heißt ein Filter Ultrafilter, wenn es keinen feineren Filter als gibt, der nicht schon ganz ist – formal ausgedrückt: Wenn ein Filter auf ist mit , dann gilt oder . Diese allgemeinere Definition stimmt in dem Spezialfall, dass die Potenzmenge einer Menge ist, mit der zuerst gegebenen überein. Mit Hilfe des Zornschen Lemmas lässt sich zeigen, dass jeder Filter in einem Ultrafilter enthalten ist.

Ultrafilter auf Verbänden

Als Spezialfall der Definition auf Halbordnungen ergibt sich eine Definition auf Verbänden. Ein Ultrafilter auf einem Verband lässt sich alternativ als Verbandshomomorphismus in die zweielementige boolesche Algebra definieren. Ein abzählbar vollständiger Ultrafilter lässt sich als 0,1-wertiges Maß auffassen.

Arten und Existenz von Ultrafiltern

Es g​ibt zwei Arten v​on Filtern. Zur Unterscheidung w​ird folgende Definition benutzt:

Ein Filter heißt frei, wenn ist, andernfalls heißt er fixiert.

Leicht sieht man, dass Ultrafilter auf einer endlichen Menge fixiert sind; auf endlichen, halbgeordneten Mengen besitzen Ultrafilter ein kleinstes Element, sie lassen sich als für ein Element darstellen. Allgemeiner gilt auf beliebigen Mengen: Ein Ultrafilter auf ist ein fixierter Ultrafilter genau dann, wenn er eine der folgenden äquivalenten Bedingungen erfüllt:

  • Es gibt ein mit .
  • Der Filter besitzt ein endliches Element.

In diesem Fall heißt Hauptelement des Ultrafilters.

Freie Ultrafilter können nur auf unendlichen Mengen existieren. Es lässt sich zeigen (Tarski'scher Ultrafiltersatz, englisch Tarski's Ultrafilter Theorem), dass jeder Filter einer Menge (allgemeiner: jede Teilmenge , für die die Schnittmenge endlich vieler Teilmengen von wieder in liegt) in einem Ultrafilter von enthalten ist. Der Beweis des Ultrafiltersatzes ist nicht konstruktiv und ergibt sich unter Anwendung des Lemmas von Zorn, setzt also die Annahme der Gültigkeit des Auswahlaxioms voraus.[2][3]

Ein Beispiel für fixierte Filter s​ind Umgebungsfilter.

Beispiele

  • Auf der leeren Menge gibt es nur den leeren Filter, welcher die leere Menge ist. Dieser ist damit ein Ultrafilter.
  • Ist eine endliche Menge, dann ist jeder Ultrafilter auf genau durch einen Punkt fixiert. Wäre das nicht so und wäre der Filter durch die Menge fixiert, so könnte man ihn durch Hinzufügen von echt verfeinern. Somit sind die Ultrafilter auf einer endlichen Menge gerade die Punktfilter.
  • Der Umgebungsfilter eines Punktes in der Topologie ist genau dann ein Ultrafilter, wenn der Punkt isoliert ist.

Anwendungen

Literatur

  • Boto von Querenburg: Mengentheoretische Topologie. 3. neu bearbeitete und erweiterte Auflage. Springer-Verlag, Berlin u. a. 2001, ISBN 3-540-67790-9 (Springer-Lehrbuch).
  • Paul Moritz Cohn: Universal Algebra (= Mathematics and Its Applications. Band 6). Überarbeitete Auflage. D. Reidel Publishing Company, Dordrecht, Boston 1981, ISBN 90-277-1213-1.
  • Thorsten Camps, Stefan Kühling, Gerhard Rosenberger: Einführung in die mengentheoretische und die algebraische Topologie. Heldermann, Lemgo 2006, ISBN 3-88538-115-X (Berliner Studienreihe zur Mathematik 15), S. 203ff. Kapitel 13.
  • Thomas Jech: Set Theory. The Third Millennium edition, revised and expanded (= Springer Monographs in Mathematics). Springer Verlag, Berlin, Heidelberg, New York 2003, ISBN 3-540-44085-2.
  • Horst Schubert: Topologie (= Mathematische Leitfäden). 4. Auflage. B. G. Teubner, Stuttgart 1975, ISBN 3-519-12200-6.

Einzelnachweise

  1. Thomas Jech: Set Theory 2003, S. 74 ff.
  2. Jech, op. cit., S. 75.
  3. Auf diesem Wege ist die Existenz freier Ultrafilter gesichert. So bilden etwa die kofiniten Teilmengen einer unendlichen Menge einen Filter, die freien Ultrafilter sind gerade die Ultrafilter, die Oberfilter dieses Filters sind.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.