Translationsfläche

Eine Translationsfläche i​st ein mathematisches Objekt a​us dem Teilgebiet d​er Geometrie. Es g​ibt mehrere äquivalente Möglichkeiten, d​iese Fläche z​u definieren. In diesem Artikel w​ird die Definition mittels Karten gewählt.

Definition

Eine Translationsfläche ist eine zusammenhängende, kompakte, orientierbare Fläche mit Geschlecht , eine endliche, nichtleere Menge von Singularitäten und ein zweidimensionaler Atlas auf , so dass die Kartenwechselabbildungen von Translationen sind.

Äquivalent k​ann man e​ine Translationsfläche definieren a​ls eine Riemannsche Fläche m​it einer holomorphen 1-Form (einem abelschen Differential). Die Singularitäten d​er Translationsfläche entsprechen d​en Nullstellen d​er 1-Form.

Beispiele

  • Nimmt man ein Quadrat in der Ebene und verklebt jeweils die gegenüberliegenden Seiten mittels Translationen, so entsteht ein Torus. Der Torus ist also eine Translationsfläche ohne Singularitäten. Die Winkel um die Ecke (nach dem Verkleben ist es nur noch eine) addieren zich zu , weshalb das Bild dieser Ecke keine (bzw. eine hebbare) Singularität ist.
  • Eine etwas kompliziertere Translationsflächen entsteht beim Verkleben von zwei regulären Fünfecken. Dreht man die Fünfecke so, dass jeweils eine ihrer Seiten horizontal ist, wobei ein Fünfeck über seiner horizontalen Seite liegt und das andere darunter, so sind je zwei Seiten parallel. Verklebt man die parallelen Seiten, entsteht eine kompakte Fläche. Auch hier werden alle Ecken miteinander identifiziert. Es entsteht eine konische Singularität mit Winkel (der Innenwinkelsumme der Ecken). Im Gegensatz zum Torus ist die Singularität in diesem Fall also nicht hebbar. Die resultierende Translationsfläche hat das Geschlecht 1. Das kann man zum Beispiel mit Hilfe der Eulercharakteristik berechnen.
  • Allgemein entsteht jede Translationsfläche aus endlich vielen euklidischen Polygonen durch Identifizieren von Seitenpaaren durch Translationen. Dabei werden jeweils entgegengesetzt orientierte Seiten miteinander identifiziert und die Orientierungen sind so gewählt, dass der Rand der in der Ebene liegenden Polygone im Uhrzeigersinn durchlaufen wird. Die Ecken der Polygone entsprechen (evtl. hebbaren) Singularitäten der Translationsfläche, die Winkel um eine Ecke addieren sich zu einem Vielfachen von . Alle Singularitäten sind Bilder von Ecken der Polygone.

Holonomie und Singularitäten

Eine flache Metrik definiert einen Paralleltransport, dessen Holonomie entlang eines eine konische Singularität umlaufenden geschlossenen Weges die Drehung um den Kegelwinkel der Singularität ist. Die Singularitäten einer Translationsfläche sind konische Singularitäten mit einem Kegelwinkel, der ein ganzzahliges Vielfaches von ist. Deshalb haben Translationsflächen triviale Holonomie.

Anwendung

Translationsflächen können z​um Beispiel d​azu verwendet werden, (reibungsfreie) Billardbahnen i​n rationalen polygonförmigen Billardtischen z​u untersuchen. An Stelle d​er Reflexion d​er (punktförmigen) Billardkugel a​n einer Seite d​es Polygons, w​ird das Polygon a​n dieser Seite gespiegelt u​nd die Billardbahn verläuft geradlinig weiter.[1]

Einzelnachweise

  1. A. N. Zemlyakov, A. B. Katok: Topological Transitivity of Billiards in Polygons. In: Mathematical Notes. 18, 2, S. 760–764.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.