Strontiumwolframat

Strontiumwolframat i​st eine anorganische chemische Verbindung d​es Strontiums a​us der Gruppe d​er Wolframate.

Strukturformel
Allgemeines
Name Strontiumwolframat
Andere Namen

Strontiumwolframoxid

Summenformel SrWO4
Kurzbeschreibung

weißer geruchloser Feststoff[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer 13451-05-3
EG-Nummer 236-617-9
ECHA-InfoCard 100.033.275
PubChem 123306
Wikidata Q25387695
Eigenschaften
Molare Masse 335,46 g·mol−1
Aggregatzustand

fest[2]

Dichte

6,439 g/cm3 (25 °C)[3]

Schmelzpunkt

1535 °C[4]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [2]

Achtung

H- und P-Sätze H: 315319335
P: 261305+351+338 [2]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Gewinnung und Darstellung

Strontiumwolframat k​ann durch Reaktion v​on Strontiumcarbonat m​it Wolfram(VI)-oxid b​ei hohen Temperaturen gewonnen werden.[3]

Eigenschaften

Strontiumwolframat i​st ein weißer geruchloser Feststoff.[2] Er besitzt e​ine tetragonale Kristallstruktur v​om Scheelittyp m​it der Raumgruppe I41/a (Raumgruppen-Nr. 88)Vorlage:Raumgruppe/88.[3][5] Bei e​inem Druck v​on 2,1 GPa wandelt s​ich diese i​n eine monokline Kristallstruktur v​om Wolframittyp m​it der Raumgruppe P2/n (Raumgruppen-Nr. 13, Stellung 2)Vorlage:Raumgruppe/13.2.[4] Bei e​inem Druck v​on etwa 10 GPa g​eht die Verbindung d​ann in e​ine Kristallstruktur v​om Fergusonittyp über.[6]

Verwendung

Strontiumwolframat w​ird als elektrooptisches Material z. B. für Raman-Laser[7] u​nd Leuchtdioden[8] verwendet.[9]

Einzelnachweise

  1. Datenblatt Strontiumwolframat bei AlfaAesar, abgerufen am 14. Juni 2016 (PDF) (JavaScript erforderlich).
  2. Datenblatt Strontium tungsten oxide, powder, −200 mesh, 99.9% trace metals basis bei Sigma-Aldrich, abgerufen am 14. Juni 2016 (PDF).
  3. Jiandong Fan, Huaijin Zhang, Zhengping Wang, Wenwei Ge, Jiyang Wang: Synthesis of polycrystalline materials of SrWO4 and growth of its single crystal. In: Frontiers of Chemistry in China. 1, 2006, S. 264, doi:10.1007/s11458-006-0023-z.
  4. E. Yu Tonkov: High Pressure Phase Transformations Handbook 1. CRC Press, 1992, ISBN 978-2-88124-758-3, S. 620 (eingeschränkte Vorschau in der Google-Buchsuche).
  5. M.A.M.A Maurera, A.G Souza, L.E.B Soledade, F.M Pontes, E. Longo, E.R Leite, J.A Varela: Microstructural and optical characterization of CaWO4 and SrWO4 thin films prepared by a chemical solution method. In: Materials Letters. 58, 2004, S. 727, doi:10.1016/j.matlet.2003.07.002.
  6. D. Errandonea, J. Pellicer-Porres, F. J. Manjón, A. Segura, Ch. Ferrer-Roca, R. S. Kumar, O. Tschauner, P. Rodríguez-Hernández, J. López-Solano, S. Radescu, A. Mujica, A. Muñoz, G. Aquilanti: High-pressure structural study of the scheelite tungstates CaWO4 and SrWO4. In: Physical Review B. 72, 2005, doi:10.1103/PhysRevB.72.174106.
  7. Xin-Tao Wu, Ling Chen: Structure-Property Relationships in Non-Linear Optical Crystals II The IR Region. Springer, 2012, ISBN 978-3-642-29621-5, S. 81 (eingeschränkte Vorschau in der Google-Buchsuche).
  8. Yandong Ren, Yonghao Liu, Rui Yang: A series of color tunable yellow–orange–red-emitting SrWO4:RE (Sm3+, Eu3+–Sm3+) phosphor for near ultraviolet and blue light-based warm white light emitting diodes. In: Superlattices and Microstructures. 91, 2016, S. 138, doi:10.1016/j.spmi.2015.12.026.
  9. Xiaohua J. Huang: Nanotechnology Research New Nanostructures, Nanotubes and Nanofibers. Nova Publishers, 2008, ISBN 978-1-60021-902-3, S. 75 (eingeschränkte Vorschau in der Google-Buchsuche).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.