Schleudersitz
Ein Schleudersitz ist ein System zur Rettung der Besatzung eines Flugzeuges oder Hubschraubers im Gefahrenfall. Der Schleudersitz katapultiert sich dabei mitsamt Insassen aus dem Luftfahrzeug. Eingebaute Raketen-Treibsätze entfernen den Schleudersitz weiter vom Flugzeug, bis dieser automatisch abgebremst und stabilisiert wird. Der Pilot wird danach vom Rettungssystem getrennt und sinkt an einem Fallschirm zu Boden. Der Schleudersitz selbst stürzt ungebremst ab und wird zerstört.
Schleudersitze sind hauptsächlich in Militärflugzeugen mit kleiner Besatzung (typischerweise 1 bis 2 Personen) eingebaut. Aus sowjetischen Wostok-Raumschiffen stieg der Kosmonaut planmäßig mit dem Schleudersitz aus und landete mit dem Fallschirm.
Heutige Systeme funktionieren auch dann, wenn sich das Flugzeug noch am Boden befindet (sog. 0/0-Sitze; Höhe = 0 / Geschwindigkeit = 0; auch zero/zero geschrieben). Sie ermöglichen ebenso einen sicheren Rettungsausstieg in sehr großen Höhen und bei hohen Fluggeschwindigkeiten.
Ein Schleudersitz besteht aus dem Sitz, einer Sprengeinrichtung, einem Raketenantrieb, evtl. einem Stabilisierungssystem, einem Rundkappenfallschirm, einer Sauerstoffflasche für große Höhen und einer Überlebensausrüstung einschl. Schlauchboot, Funkgerät, Proviant etc.
Die meisten Schleudersitze katapultieren sich nach oben aus dem Flugzeug; einige wenige katapultieren sich nach unten hinaus, so zum Beispiel zwei der sechs Sitze bei der B-52 Stratofortress.
Ablauf eines Schleudersitz-Ausstiegs
Die folgende Beschreibung bezieht sich beispielhaft auf den Ausstieg mit einem Schleudersitz des Typs Martin-Baker Mk. XA[1]. Bei anderen Modellen ist der Ablauf ähnlich, wenngleich es natürlich Detailunterschiede gibt.
Kommt die Besatzung in eine lebensbedrohliche Lage und sollen die Schleudersitze zum Verlassen des Flugzeuges genutzt werden, laufen die folgenden Schritte ab. Der gesamte Vorgang vom Auslösen des Systems bis zur Öffnung des Hauptfallschirms dauert nur etwa 2–3 Sekunden, wenn die Auslösung in Bodennähe erfolgt.
- Der Pilot aktiviert den Mechanismus durch Ziehen an einem der Abzugsgriffe (über dem Kopf, zwischen oder neben den Beinen) und nimmt dadurch die Hände vom Steuerknüppel und dem Leistungshebel.
- Das Dach oder die Scheibe über der Pilotenkanzel wird entfernt. Je nach Luftfahrzeugtyp gibt es dazu verschiedene Verfahren. Z. B. kann dies durch Sprengschnüre erfolgen, die in eine Silikonhülle gelegt und mit dieser auf dem Kunststoffglas des Kabinendaches aufgeklebt sind, oder es wird das Dach mittels Pneumatik abgeworfen. Bei manchen Flugzeugen erfolgt der Ausschuss durch das geschlossene Dach, wobei der Schleudersitz mittels eines an der Oberseite angebrachten „Dornes“ das Glas durchbricht. Bei alten Flugzeugtypen musste das Kabinendach vorher manuell abgeworfen werden. Bei manchen Flugzeugtypen waren die Abzugsgriffe am Kopfstück des Schleudersitzes als Splitterschutzkapuze konstruiert. Der Pilot zog diese beim Auslösen über das nur von der Sauerstoffmaske geschützte Gesicht.
- Der Sitz wird durch eine „Schleudersitzkanone“ (ein Teleskoprohr mit eingebauten pyrotechnischen Munitionselementen) aus dem Flugzeug hochgeschossen.
- Nachdem der Sitz auf dem Rohr der Schleudersitzkanone auf eine genau definierte Höhe ausgefahren ist, wird eine Zusatz-Raketenpackung unter dem Sitz gezündet, wodurch die Besatzung weiter beschleunigt und in eine sichere Höhe bzw. Entfernung vom Flugzeug hinausgeschleudert wird. Bei mehrsitzigen Flugzeugen erfolgt der Ausschuss gestaffelt von hinten nach vorne. Um einen Zusammenstoß in der Luft zu vermeiden, wird ein Sitz nach links, der andere nach rechts katapultiert. Gleichzeitig mit dem Auslösen des Schleudersitzes werden die Verbindungs- und Kommunikationsleitungen vom Flugzeug getrennt und vollautomatischer Notfunksender auf 243 MHz aktiviert, um gezielte Rettungsaktionen auch dann zu ermöglichen, wenn der Pilot bewusstlos ist. Der Sender kann auch zum Wechselsprechen mit der Bergemannschaft benutzt werden. Zugleich beginnt die Notsauerstoffversorgung zu arbeiten.
- Ein raketengesteuertes Stabilisierungssystem sorgt mit Steuerdüsen dafür, dass unerwünschte Rotations- und Taumelbewegungen reduziert werden und der Sitz auch bei ungünstiger Flugzeuglage oder minimaler Höhe über Grund eine sichere Position einnimmt.
- Eine barometrische (oder auch eine zeitgesteuerte) Auslösung regelt den weiteren Ablauf: Unterhalb einer definierten Höhe (meist < 5000 m) wird der Sitz vom Piloten getrennt und fällt je nach Modell entweder ungebremst oder mit einem Fallschirm ausgestattet auf den Boden. Bei der Sitz-Mann-Trennung wird mit einer kleinen Rakete zunächst der Hilfs- oder Steuerschirm (engl. drogue) aus dem Sitz herausgeschossen, welcher wiederum einen größeren Hilfsschirm oder gleich den Hauptrettungsschirm aus der Sitzpackung zieht. Ein Beschleunigungsschalter verhindert das Öffnen des Fallschirms bei Geschwindigkeiten über 400 km/h, um ein Zerreißen des Schirmes zu vermeiden. Nach der Landung steht dem Piloten eine Überlebensausrüstung zur Verfügung, die auf das jeweilige Einsatzgebiet abgestimmt ist und z. B. ein Schlauchboot enthalten kann. All dies befindet sich in einem Notausstattungsbehälter; der über eine Packhüllenleine mit dem Besatzungsmitglied verbunden ist.
- Hauptabzugsgriff mit Splitterschutz
- Sprengschnur im Kabinendach
(siehe grüner Pfeil) - Detail, Teleskoprohrkanone in der Mitte der Sitzrückseite
- Die Raketenpackung hat gezündet, der „Feuerstuhl“ wird weiter hoch geschossen, während gleichzeitig der Hilfsfallschirm herausgeschossen wird.
- Ausschuss kopfüber
PEC (personal equipment connector)
Als PEC wird eine dreiteilige Abreißkupplung am Schleudersitz für die schnelle und gleichzeitige Trennung aller Verbindungen des Piloten zum Flugzeug im Falle eines Notausstiegs bezeichnet.
Wenn ein Ausstieg mit dem Schleudersitz notwendig ist, müssen die zur Versorgung des Piloten dienenden Verbindungen zum Flugzeug, wie Sauerstoffleitung, Anti-g-System, Kommunikationskabel etc. schnell und ohne Probleme getrennt werden, um Verletzungen in der 2–3 Sekunden dauernden Ausstiegsphase zu vermeiden.
Das PEC besteht aus drei Teilen, dem Flugzeugteil, dem Sitzteil und dem Pilotenteil. Bei einem Schleudersitzausstieg trennt diese Kupplung zunächst die flugzeugseitige Zuführung der Versorgungsleitungen vom Sitz und dann auch die Verbindung auf der Pilotenseite.
Medizinische Aspekte
Die Raketenantriebe der Schleudersitze sind so stark, dass ernsthafte Wirbelsäulenschäden die Folge eines Ausschusses sein können.[2] Die Beschleunigungskraft (g-Kraft) beträgt für den Bruchteil einer Sekunde je nach Sitzmodell 15 bis 20 g. Entscheidend zur Vermeidung von Verletzungen ist dabei eine aufrechte Körperhaltung. Zum Vergleich: in Achterbahnen sowie beim Start einer Raumfähre können bis zu 5 g einwirken. Ab ca. 6 g tritt ohne spezielle Anzüge Bewusstlosigkeit ein. Nur durch den Umstand, dass die Beschleunigungsphase sehr kurz andauert, sind solch enorme Kräfte zu ertragen. Allerdings ist nicht nur der Absolutwert der g-Kräfte entscheidend, sondern auch deren zeitliches Verhalten, mathematisch also die Ableitung der Beschleunigung nach der Zeit.[3]
Bereits ein einmaliges Aussteigen per Schleudersitz kann deshalb auch zu einer Beendigung der Pilotenkarriere führen. Etwa 30 % der Strahlflugzeugführer werden nach einem Notausstieg nicht mehr für flugtauglich befunden. Für Untrainierte können diese Ausstiege sogar tödlich sein.
Geschichte
Frühe Vorläufer
Einen ersten Vorläufer des Schleudersitzes ließ sich 1916 der britische Eisenbahningenieur Everard Richard Calthrop patentieren, nachdem er seinen Freund Charles Rolls bei einem Flugzeugabsturz hatte sterben sehen. Seine Konstruktion sah vor, den Piloten von einem Fallschirm, der seinerseits mit Hilfe von Pressluft entfaltet worden war, aus seinem abstürzendem Flugzeug herausziehen zu lassen.[4]
1928 meldeten die Rumänen Anastase Dragomir und Tanase Dobresco ein französisches Patent an, das einen mit Federhilfe aus einem Flugzeug herausschleuderbaren Sitz mit daran befestigtem Fallschirm zum Gegenstand hatte.[5] Ziel war es, sämtlichen Flugpassagieren im Falle einer Havarie eine Überlebenschance zu geben. Tatsächlich funktionierte das System zumindest prinzipiell, wie der bekannte französische Pilot Lucien Bossoutrot im folgenden Jahr mit Puppen demonstrierte, die während des Fluges in einem entsprechenden Sitz aus einem Farman-Flugzeug herausgeschleudert wurden und unbeschädigt am Boden landeten.[6]
In der Folge wurde die Entwicklung jedoch zunächst nicht als vorrangig angesehen. Die Besatzungsmitglieder propellergetriebener Flugzeuge konnte in der Regel aus eigener Kraft das Flugzeug verlassen und abspringen. Je höher jedoch die Fluggeschwindigkeit durch den Fortschritt der Luftfahrt wurde, desto schwieriger war dies aufgrund des Staudrucks. Es bestand auch die Gefahr, durch den Fahrtwind gegen das Flugzeug, vor allem gegen das Leitwerk, geschleudert zu werden (was u. a. zum tragischen Tod von Hans-Joachim Marseille führte). Diese Umstände führten zur Entwicklung von Rettungssystemen für den Ausstieg aus Flugzeugen.
1930 erdachte der britische Luftwaffenoffizier A.M. Dudgeon eine einfache Ausstiegshilfe, die den Sitz mit Federn in den Luftstrom heben und somit dem Piloten das anschließende Abrollen über die Bordwand erleichtern sollte. Seine Idee wurde jedoch vom britischen Luftfahrtministerium verworfen, weil man dort fürchtete, durch diese Erleichterung hätten Piloten nicht mehr genug Ehrgeiz, um ein havariertes Flugzeug wieder zum Boden zurückzubringen.
Deutschland 1934–1945
Nachdem der Erfinder Ulf Weiß-Vogtmann 1934 einen Katapult-Schleudersitz mit daran befestigtem Fallschirm beschrieben (aber nicht zum Patent eingereicht) hatte[7], nahm man in Deutschland zügig die Entwicklung entsprechender Systeme in Angriff, wobei die Forschungsanstrengungen hauptsächlich bei der Firma Heinkel gebündelt wurden. Das Hauptaugenmerk lag dabei zunächst darauf, den besonders gefährdeten Testpiloten unerprobter Flugzeug-Prototypen – nicht zuletzt der neuartigen Strahlflugzeuge – bessere Überlebenschancen im Falle eines Absturzes zu bieten. Als Antrieb wurde vorerst Pressluft vorgesehen. Bei den Entwicklungsarbeiten zeigte sich, dass der zunächst verfolgte Ansatz, den Sitz mitsamt Insassen zu Boden schweben zu lassen, beim Aufsetzen erhebliche Risiken barg. Daher meldeten die Ingenieure Karl Arnhold, Oscar Nissen, Reinhold Preuschen und Otto Schwarz 1938 ein Konzept zum Patent an, bei dem sich der Insasse nach dem Herausschleudern von seinem Sitz lösen und an einem separaten Fallschirm zu Boden schweben sollte.[8]
Die grundlegenden medizinischen Experimente im Zusammenhang mit der Schleudersitzentwicklung wurden auf einer Katapultanlage auf dem Flughafen Berlin-Tempelhof vorgenommen und vom Direktor des Instituts für Flugmedizin der Deutschen Versuchsanstalt für Luftfahrt, Siegfried Ruff, sowie seinem Mitarbeiter Weisehofer geleitet. Zur Ermittlung der Belastungsfähigkeit der menschlichen Wirbelsäule verwendete man Leichen. Bei den Schleudersitzerprobungen wurden auch Häftlinge aus dem KZ Sachsenhausen eingesetzt. Angaben dazu, inwieweit sie (mehr oder weniger) freiwillig teilgenommen bzw. körperlich Schaden genommen haben, sind uneinheitlich.[3][9][10]
Der nur in Kleinserie hergestellte Düsenjäger He 280 erhielt als erstes Flugzeug der Welt einen Schleudersitz. Am 13. Januar 1943 betätigte Hauptmann Helmut Schenk bei einem Probeflug an der Erprobungsstelle Rechlin den Schleudersitz seiner He 280, nachdem die Maschine wegen Vereisung unkontrollierbar geworden war; dies war der erste Notausstieg in der Geschichte der Luftfahrt. Schenk blieb unverletzt; die He 280 stürzte in einen Wald. Auch der zweite notfallmäßige Schleudersitzausschuss der Welt fand in Deutschland statt: Am 15. Juli 1943 musste sich Hauptmann Hans-Joachim Pancherz, Erprobungspilot bei Junkers, in Lärz (Rechlin) aus einer Junkers Ju 290 herausschießen, nachdem bei Höchstgeschwindigkeit Teile des Flugzeugs abgebrochen waren.
Die erste Maschine mit serienmäßig eingebautem Schleudersitz war der ab 1940 entwickelte Nachtjäger Heinkel He 219. Aus einem solchen Flugzeug gelang auch am 11. April 1944 der erste bekannte Doppelausschuss, als sich der Pilot Unteroffizier Herter und sein Bordschütze Gefreiter Perbix mit dem Schleudersitz retten konnten. Alle ab 1942 neuentwickelten Flugzeuge der deutschen Luftwaffe wurden mit Schleudersitzen geplant, so z. B. die Do 335, bei der der Heckpropeller für aussteigende Piloten gefährlich werden konnte, und der sog. „Volksjäger“ He 162. Insgesamt retteten Schleudersitze über 60 deutschen Besatzungsmitgliedern im Zweiten Weltkrieg das Leben.
Waren noch die ersten praxisreifen Schleudersitze mit Pressluft oder Treibladungen angetrieben worden, so erkannte Erich Dietz, ebenfalls ein Junkers-Ingenieur, 1943, dass Raketenantriebe deutliche Vorteile boten, vor allem aufgrund der erst allmählich auf den Körper einwirkenden Beschleunigungswirkung; davon abgesehen sind raketengestützte Systeme leichter, platzsparender und wartungsfreundlicher. Dietz sah einen weiteren Vorteil darin, dass die auf den Körper wirkenden Drehmomente mit diesem Konzept besser steuerbar sind, und ließ es sich patentieren.[11] Allerdings sollte es noch fast zwei Jahrzehnte dauern, ehe das Prinzip verwirklicht wurde; heute beruhen alle weltweit gebauten Schleudersitze darauf.
Insgesamt wurden in Deutschland während des Krieges verschiedene Typen Schleudersitze entwickelt:
- Der zumeist verwendete Heinkel-Schleudersitz basierte in seiner Ursprungsversion auf einem Druckluft-Katapult. Er erreichte bei einer Spitzenbeschleunigung von 14 g eine Geschwindigkeit von 9,75 m/s. Mit ihm wurde Anfang 1941 der Fallschirmerprobungsspringer Wilhelm Buss als erster Mensch aus einem Flugzeug herausgeschossen. Später ging man zur Nutzung von Treibladungen („Heinkel-Kartuschen“[12]) anstelle von Druckluft über.
- Focke-Wulf entwickelte einen Schleudersitz für die Ta 154; er wurde pyrotechnisch mit 18 g beschleunigt und erreichte eine Geschwindigkeit von 11 m/s.
- Auch Dornier entwickelte einen Schleudersitz mit einer (sehr kurzzeitigen) Beschleunigungsspitze von 25 g, was jedoch als inakzeptabel angesehen wurde. Die Entwicklung wurde, bedingt durch das Kriegsende, abgebrochen.
Schweden 1941–1983
Unabhängig von den deutschen Entwicklungen begann man ab 1941 bei SAAB in Schweden, Schleudersitze zu konstruieren. Anlass hierzu war der Heckpropellerantrieb des neuesten Jagdflugzeugprojekts, der Saab 21, der zur Gefahr für einen aussteigenden Piloten werden konnte. Ebenso wie in Deutschland experimentierte man anfangs mit Druckluft, begann aber ab Ende 1942 in Zusammenarbeit mit Bofors die Entwicklung von Sitzen mit Explosivladungen. Eine kurzzeitige Beschleunigung von 15 g wurde dabei akzeptiert.[13] Nachdem Versuche mit lebensgroßen Puppen 1944 erfolgreich verlaufen waren, wurden sämtliche ab 1945 produzierten SAAB 21 mit diesem Typ Schleudersitz ausgerüstet. Der erste Pilot, der ihm sein Leben verdankte, war Leutnant Bengt Johansson, der am 29. Juli 1946 nach einer Kollision sein Flugzeug verlassen musste.[14]
Nach dem Krieg wurde der schwedische Schleudersitz zuweilen auch in ausländischen Flugzeugen verbaut, etwa der britischen Folland Gnat.[15][16] Anfang der 1980er Jahre wurde die Entwicklung in Schweden eingestellt, nachdem Exportaufträge ausgeblieben waren; der letzte Schleudersitz aus schwedischer Produktion war in der SAAB JA 37 Viggen verbaut.
Internationale Entwicklung ab 1945
Die deutschen und schwedischen Bemühungen fanden während des Krieges keine gleichwertige Entsprechung auf Seiten der Alliierten. Spätestens nachdem jedoch auch dort serienreife Strahlflugzeuge entwickelt worden waren (Gloster Meteor bzw. Lockheed P-80 Shooting Star), wuchs das Interesse an geeigneten Systemen zum Notfallausstieg. Die Dringlichkeit wurde zuerst in Großbritannien erkannt, wo das Luftfahrtministerium 1944 die Firma Martin-Baker mit entsprechenden Entwicklungsarbeiten beauftragte. Signifikante Fortschritte gab es jedoch erst, als den Alliierten nach Kriegsende die deutschen Forschungs- und Entwicklungsarbeiten auf dem Gebiet zugänglich wurden. Hierauf aufbauend, wurde nun auf beiden Seiten des Atlantiks mit großer Energie die Weiterentwicklung vorangetrieben, wobei auch ehemals federführende deutsche Forscher, insbesondere auf dem medizinischen Gebiet, weiterhin bzw. erneut eingebunden wurden (u. a. Siegfried Ruff, nachdem er im Nürnberger Ärzteprozess in allen Anklagepunkten hinsichtlich Verbrechen gegen die Menschlichkeit freigesprochen worden war).
In Großbritannien blieb die Forschung auch nach dem Krieg bei Martin-Baker konzentriert; hier wurden zahlreiche Versuche an Freiwilligen durchgeführt, die rasch zu wesentlichen Erkenntnisgewinnen führten. Am 24. Juli 1946 wurde Bernard Lynch als erster Brite bei 515 km/h aus einer Gloster Meteor mit einem Schleudersitz ausgeschossen, und im nächsten Monat folgte der erste Amerikaner (aus einem Northrop-Flugzeug). Der eingesetzte Schleudersitz war ein Martin-Baker-Nachbau des Heinkel-Modells. Die Firma wurde in der Folgezeit marktführender Hersteller dieser Rettungssysteme.
Im Unterschied zu Großbritannien ging man in den USA dezentral vor. Hier wurden die deutschen Forschungsergebnisse von dem amerikanischen Arzt und Beschleunigungsforscher John Paul Stapp ausgewertet und in ein neugestartetes amerikanisches Entwicklungsprogramm zur Pilotenrettung („pilot escape technology program“) integriert. In der Folge wurden bei mehreren verschiedenen Firmen (North American, Douglas, Republic, Lockheed, Grumman, Weber, Stanley und Stencel) entsprechende Forschungen begonnen, was einerseits zu einer Diversifizierung der Erkenntnisse führte, aber Probleme bereitete, wenn es z. B. um Standardisierungsfragen ging. Hinzu kamen konkurrierende Vorstellungen der US Air Force und der US Navy, wo man die Martin-Baker-Sitze bevorzugte. Bemerkenswerterweise wurden die Schleudersitze – wie übrigens ähnlich auch in Großbritannien – von den Flugzeugbesatzungen aufgrund der Vorstellung, auf einer Explosivladung zu sitzen, zunächst nur widerwillig angenommen. Doch nachdem Hauptmann Vince Mazza 1949 eine Reihe von Demonstrations-Ausstiegen aus einer umgebauten P-80 vorgeführt hatte und sich außerdem zwei Piloten (aus einer McDonnell F2H-1 Banshee bzw. einer North American F-86 Sabre) mit dem neuen Gerät hatten retten können, schwanden die Vorbehalte schnell.
Das erste amerikanische Flugzeug mit serienmäßig eingebautem Schleudersitz, einer direkten Weiterentwicklung des Heinkel-Sitzes, war die Republic P-84 Thunderjet, die ab 1948 Serienreife erlangte.
Wesentliche Verbesserungen in den folgenden Jahren betrafen u. a. Taumel- und Rotationseffekte des herausgeschleuderten Sitzes, die den Insassen teils extremen g-Kräften aussetzten und Verletzungen aufgrund unkontrollierter Extremitätenbewegungen hervorrufen sowie ein gezieltes Herauslösen aus dem Sitz sehr erschweren konnten. Folglich wurden Komponenten zur Stabilisierung der Körperhaltung entwickelt und integriert. Ein weiteres Anliegen bestand darin, auch teilweise oder vollständig handlungunfähigen Piloten eine Überlebenschance zu bieten, so dass große Anstrengungen zu einer möglichst weitgehenden Automatisierung des Ablaufs unternommen wurden. Ein solch vollautomatisierter Ausschuss mit einer selbständigen Trennung von Rettungs- und Steuerschirm konnte erstmals 1975 verwirklicht werden. Weitere Innovationen betrafen die Verwendung spezieller Schäume zur Abmilderung des Anpressdruckes im Moment des Ausschusses (wie sie vergleichbar auch in modernen Sturzhelmen Verwendung finden).
Während des Koreakrieges betätigten amerikanische Piloten beinahe 2000 Mal den Schleudersitz, wobei allerdings die Zuverlässigkeit noch erheblich zu wünschen übrig ließ (Fehlfunktionsrate 31 %).
1955 erfolgte der erste Notfallausstieg bei Überschallgeschwindigkeit: Pilot George Smith betätigte bei Mach 1,05 den Schleudersitz seiner North American F100A Super Sabre und überlebte ohne bleibende Schäden. Im Vietnamkrieg erfolgte jeder vierte Notfallausstieg aus den von der U. S. Navy verwendeten trägergestützten North American A-5 (A3J) Vigilante bei Überschallgeschwindigkeit.
In den späten 1950er Jahren begann man, Raketensysteme anstatt ballistischer Treibladungen zu verwenden, erstmals bei der Convair F-102 Delta Dart (Sitzhersteller: Weber Aircraft Company).
Bald darauf gelang die Realisierung von Schleudersitzen, die auch von einem am Boden stehenden Flugzeug aus betätigt werden konnten (sog. Zero-Zero-Performance, d. h. Geschwindigkeit und Höhe null). Weitere Innovationen betrafen die Rettung aus großen Höhen, weswegen u. a. Sauerstoffversorgungen implementiert und Verzögerungseinrichtungen eingeführt wurden, die die Sitz-Mann-Trennung erst unterhalb einer gewünschten Maximalhöhe, meist ca. 5000 Meter, gewährleisteten.
Es gab auch Entwicklungen, die in einer Sackgasse endeten. So wurde der Schleudersitz für den F-104 Starfighter aus Platzgründen zunächst für einen Ausschuss nach unten konzipiert, weshalb der Pilot vor dem Ausstieg eine viertel oder besser halbe Rolle fliegen musste. Im Juli 1958 starb deshalb der Testpilot Iven C. Kincheloe: Er katapultierte sich aus seinem defekten Starfighter heraus, doch aufgrund der geringen Flughöhe landete der horizontal ausgeschossene Schleudersitz direkt in dem Feuerball des beim Aufprall auf dem Boden explodierten Flugzeugs.[17] Nach diesem Ereignis wurden die F-104 auf herkömmliche Schleudersitze umgerüstet.
Hinsichtlich der Überlebensrate war es zunächst ernüchternd, dass laut amerikanischen Statistiken trotz aller Verbesserungen die Überlebensraten nach einem Schleudersitzausstieg bis Mitte der 1970er Jahre nur sehr allmählich anwuchsen und bei etwa 80 % verharrten. Dies änderte sich allerdings erheblich mit der Einführung von deutlich besser der menschlichen Physioanatomie angepassten Sitzen einschließlich der breiten Verwendung von Mikroprozessoren und Sensorsystemen. Hierdurch konnten bereits in den 1980er Jahren Sitze mit eigenen Geschwindigkeits- und Höhenmessungen realisiert werden, die selbst im Rückenflug von 45 Metern über Grund noch eine erfolgreiche Rettung ermöglichten bzw. den Ausschussmechanismus an die jeweilige Flugsituation (z. B. Flughöhe) automatisch anpassen konnten (S4S der Firma Stencel[18], ACES II der Firma McDonnell Douglas[19], Mk. XIV der Firma Martin-Baker)[20]. Parallel dazu entwickelte Boeing gemeinsam mit Douglas unter dem Namen CREST (Crew Escape Technologies) einen Sitz für extreme Höhen bis zu 70000 Fuß (über 21 Kilometer)[21]
In den 1980er Jahren wurden auch Einzelheiten zu einem technisch herausragenden Schleudersitz aus sowjetischer Entwicklung bekannt: Der K-36 wurde in sowjetischen Kampfflugzeugen verbaut und ermöglicht einen Ausschuss bis zu Mach 3. Eine für die Raumfähre Buran angepasste Version, K-36RB, lässt sogar Einsatzhöhen bis zu 30.000 m und Geschwindigkeiten bis Mach 4 zu.
Im Sinne der Anpassung an situative und individuelle Besonderheiten wurden ab den 1990ern auch erhebliche Anstrengungen unternommen, Schleudersitze an die durchschnittlich zartere körperliche Konstituation von Frauen anzupassen.[2] Weitere Innovationen betrafen die Verwendung von Kompositwerkstoffen und Aluminium-Lithium-Legierungen, die eine Gewichtsersparnis auf ca. 63 Kilogramm ermöglichten.
Hinsichtlich des Nutzens von Schleudersitzen ergab eine Untersuchung der RAF von 232 Fällen aus dem Jahr 2006 eine Überlebensrate von 89 %, wobei die Piloten allerdings in 29,5 % Wirbelsäulen- und in 14,2 % Kopfverletzungen sowie (bei der Landung) in 18 % Unterleibsverletzungen erlitten. Stand 2021 haben insgesamt über 12000 Schleudersitzausstiege stattgefunden.[22]
Bemerkenswerte und spektakuläre Fälle von Schleudersitzausstiegen
- Januar 1941: Wilhelm Buss erlebt als erster Mensch einen Schleudersitzausstieg.
- 13. Januar 1943: Hauptmann Heinz Schenk steigt als erster Mensch notfallmäßig mit einem Schleudersitz aus einem havarierten Flugzeug (einer He 280) aus.
- 11. April 1944: Aus einer im Kampf beschädigten He 219 kann sich erstmals eine gesamte zweiköpfige Besatzung (Herter und Perbix) mit dem Schleudersitz retten.
- 24. Juli 1946: Der Brite Bernard Lynch wird als erster Nichtdeutscher mit einem Schleudersitz ausgeschossen (aus einer Gloster Meteor).
- 29. Juli 1946: Der Schwede Bengt Johannson ist der erste nichtdeutsche Pilot, der sich in einer Notfallsituation mit einem Schleudersitz retten kann (aus einer SAAB J21).
- November 1947: Robert A. Hoover steigt als erster Amerikaner notfallmäßig per Schleudersitz (aus einer F-84) aus, überlebt dies aber aufgrund technischer Probleme nur schwerverletzt.
- 13. Oktober 1954: Der neuseeländische Leutnant Bruce Macfarlane (1923–1994) überlebt einen Unterwasserausstieg mit Schleudersitz aus etwa 10 Meter Tiefe, nachdem seine vom Flugzeugträger SMS Albion gestartete Westland Wyvern ins Mittelmeer gestürzt ist.
- 1955: George Smith führt erstmals einen Notfallausstieg bei Überschallgeschwindigkeit aus (aus einer North American F100A Super Sabre) und überlebt.
- 26. Juli 1958: Capt. Iven C. Kincheloe Jr. stirbt, nachdem er in niedriger Flughöhe aus seinem Starfighter aussteigen musste, welcher nur einen Ausschuss nach unten ermöglichte. Die Starfighter werden daraufhin mit konventionell nach oben schießenden Schleudersitzen umgerüstet.
- 10. Juni 1969: Commander Russ Pearson überlebt als zweiter Mensch einen Schleudersitzausstieg unter Wasser, nachdem sein Trägerflugzeug Vought A-7 Corsair II in den Pazifik gestürzt war.
- August 1981: Der sowjetische Testpilot Alexander Konowalow überlebt einen Schleudersitzausstieg bei der größten dokumentierten Geschwindigkeit, bei Mach 2,6, in 18.000 m Höhe, als er sich über dem Flugplatz Sormowo mit einem KM-1 aus einer MiG-25 Foxbat-B rettet. Er trägt dabei einen Druckanzug.[23] (Später wird ein Unfall mit einer damals noch geheimen Lockheed SR-71 am 25. Januar 1966 über New Mexico bekannt, den der Testpilot William A. Weaver als eines der beiden Besatzungsmitglieder überlebte, nachdem er bei Mach 3,18 auf einer Flughöhe von 22,9 km ohne Schleudersitz, aber mit Fallschirm aus dem Flugzeug geschleudert wurde.[24]).
- 3. Juni 1984: Bei einer Flugvorführung in Großostheim bei Aschaffenburg wird ein Zuschauer von einem (nach der Sitz-Mann-Trennung) herabstürzenden Schleudersitz erschlagen. Der Unfall ereignet sich, nachdem der Pilot Flt. Ltn. Nick Gilchrist aus seiner in Brand geratenen Hawker Siddeley Harrier notfallmäßig ausgestiegen war; er landete in einem Bierzelt und überlebte unverletzt.[25]
Sonderentwicklungen
- Alternativ zum Herausschießen des Pilotensitzes wurden auch Systeme entwickelt, bei denen die komplette Cockpitkapsel (als Rettungskapsel) vom Flugzeugrumpf getrennt wird (z. B. bei der F-111). Zuvor war ein solches Konzept bereits 1938 beim ersten Strahlflugzeug der Welt, der He 176, verwirklicht worden.[26]
- Interessant war auch die amerikanische Entwicklung eines Rettungssitzes, welche während des Vietnamkrieges begann und 1971 zum Patent angemeldet wurde. Sie sollte verhindern, dass ein ausgestiegener Pilot in feindliche Hände geriet. Hierzu wurde nach dem Ausschuss ein Turbinenantrieb gestartet, wodurch der Sitz in Verbindung mit einem ausklappbaren Rotor zum Tragschrauber verwandelt wurde. Die Reichweite wurde mit 100 km und 185 km/h Höchstgeschwindigkeit angegeben.[27]
- Die ersten Hubschrauber, die mit einem Schleudersitz ausgerüstet wurden, sind der ab 1980 entwickelte russische Kamow Ka-50 Hokum und der Kamow Ka-52 Alligator. Die Rotorblätter werden bei Aktivierung des Schleudersitzes automatisch abgesprengt.
- Das einzige Verkehrsflugzeug, das jemals mit Schleudersitzen ausgestattet war, war die sowjetische Tupolew Tu-144, allerdings lediglich im Prototyp und ausschließlich für die Besatzung, nicht die Fluggäste. (Die 1973 bei Goussainville abgestürzte Maschine hatte hingegen keine Schleudersitze.).[28]
Bilder
NASA-Test mit einem Dummy im Schleudersitz einer Northrop F/A-18, aus dem Stand abgeschossen.
- Startposition
- Abschuss
- kurz nach dem Ausschuss
- Hauptschirm öffnet sich,
Sitz fällt ab - Landung am geöffneten Schirm
Trivia
Die Redewendung „auf dem Schleudersitz sitzen“ wird verwendet, um auszudrücken, dass jemand eine Position innehat, die er schnell wieder verlieren kann, weil er z. B. eine umstrittene Aufgabe erfüllen muss. In diesem metaphorischen Kontext ist der Ausdruck negativ konnotiert. Die eigentliche Funktion des Schleudersitzes, das Leben der Person vor dem sicheren Tod zu retten, tritt in den Hintergrund.
In dem Humphrey-Bogart-Film Des Teufels Pilot (Chain Lightning) wird die Idee einer Rettungskapsel, wie sie (abgesehen von dem Prototyp He 176) erst sehr viel später in der F-111 realisiert wurde, für die damalige Zeit erstaunlich realitätsnah vorweggenommen.
Literatur
- A. Geertz: Grenzen und Sonderprobleme bei Anwendung von Sitzkatapulten. Dissertation, TH Stuttgart, November 1944.
- S. Ruff, M. Ruck, G. Sedelmayr: Sicherheit und Rettung in der Luftfahrt. Bernard & Graefe Verlag, Koblenz 1989, ISBN 3-7637-5293-5.
- Heinz A. F. Schmidt: Lexikon der Luftfahrt. Motorbuch-Verlag, Berlin 1971, ISBN 3-87943-202-3, S. 325, 326, (308, 309).
- Gerhard Sedlmayr, H. Just, R. Cronjaeger, E. Schmitz: Sicherheit und Rettung. VDI-Buch. In: Ludwig Bölkow (Hrsg.): Ein Jahrhundert Flugzeuge. Geschichte und Technik des Fliegens. Reprint der 1. Auflage von 1990. Springer, Berlin / Heidelberg / New York 2012, ISBN 978-3-18-400816-1, S. 220–249.
- Craig Ryan: Sonic wind: The story of John Paul Stapp and how a renegade doctor became the fastest man on earth. Wiley-Blackwell, 2016, ISBN 978-0-631-49191-0.
- Bryan Philpott: Eject! Eject! Ian Allan Publishing, 1989, ISBN 978-0-7110-1804-4.
- Jim Tuttle: Eject! The complete history of US aircraft excape systems. MBI, 2002, ISBN 978-0-7603-1185-1.
- Wolfgang Späte, Kurt Zwickau, Georg Wollé, Helmut Roloff: Testpiloten. Hrsg.: Wolfgang Späte. Aviatic Verlag, Oberhaching 1993, ISBN 978-3-925505-23-2.
Weblinks
- Kalikiano Kalei: Achtung! Schleudersitzaparat! A history of military aircraft egress systems. 7. Februar 2008. Abgerufen am 21. Juli 2021.
- ejectionsite.com (englisch)
- Video: Schleudersitzausschuß während einer Flugshow
- Aircrew equipment assemblies (englisch PDF MK.1-4; 8,14 MB)
- Welt online „Mk 16E“ Explosive Sitzgelegenheit 2003 (abgerufen am 20. Februar 2009)
- Filmclip mit schwedischen Schleudersitzversuchen für die SAAB 21
Quellen
- Hightech bewahrt vor Tod: So funktioniert der Tornado-Schleudersitz. In: Rhein-Zeitung. 20. November 2013, abgerufen am 25. Juli 2021.
- Stefan Schmitt: Dem Himmel so nah. Wie moderne Schleudersitze technische Meisterleistungen vollbringen. In: Zeit Wissen. Nr. 1, 10. Dezember 2008, S. 68–71 („In dem Moment, in dem das Rohr in der Rückenlehne und das am Cockpitboden getrennt sind, lässt der Schub schlagartig nach. Für die Ingenieure war dies lange ein Problem: Verwendeten sie eine zu schwache Treibladung, kam der Pilot nicht sicher aus dem Flugzeug. War sie zu stark, riskierten sie Verletzungen am Rückgrat. Das Problem verschärfte sich zusätzlich, als die ersten Frauen Kampfjets bestiegen. Schließlich muss ein Schleudersitz seitdem ihre im Durchschnitt zarteren Körper ebenso unbeschadet. in Sicherheit bringen können wie den eines viel schwereren und deutlich größeren Mannes.“).
- John Hentzel, G. C. Mohr, H. E. von Gierke: Reappraisal of biodynamic implications of human ejections. In: Aerospace Medicine. März 1968, S. 232–240.
- Everard Richard Calthrop: Improvements relating to parachutes. GB Patent 111498A
- FR678566A
- Luana Pleşea , Alex Grigorescu: Anastase Dragomir, der Erfinder eines Vorläufers des Schleudersitzes. Radio România Internaţional, 9. Dezember 2014, abgerufen am 19. Juni 2021.
- Heinz Bensberg: Ahoi, der Erfinder des Schleudersitzes. Abgerufen am 19. Juni 2021.
- Deutsches Reichspatent 711045 (DE000000711045A)
- Friedrich Stamp: Zwangsarbeit in der Metallindustrie 1939–1945. Das Beispiel Mecklenburg-Vorpommern. Hrsg.: Otto Brenner Stiftung. Arbeitsheft Nr. 24. Berlin November 2001.
- Escape! Pioneers of survival. Interview mit Paul Stapp. In: Nova online. November 2000, abgerufen am 21. Juli 2021 (englisch).
- DRP 918006 (DE000000918006B)
- Kevin Coyne: Heinkel 162 ejection seat. In: The ejection site. Abgerufen am 19. Juni 2021 (englisch).
- Early Swedish ejection seats. In: Uban’s blog. Abgerufen am 19. Juni 2021 (englisch).
- Greg Goebel: The SAAB J 21 & J 21R. In: airvectors.net. 1. August 2020, abgerufen am 19. Juni 2020 (englisch).
- Early Swedish ejection seats. In: u-fr.blogspot.com. Abgerufen am 20. Juni 2021 (englisch).
- Eject, eject, eject and escape! In: Air international. 13. Februar 2020, abgerufen am 20. Juni 2021 (englisch).
- spiegel.de / einestages: Sie nannten ihn den „schönen Tod“
- P.M. Peter Moosleitner Magazin 7/1979.
- P.M. Peter Moosleitner Magazin 11/1983.
- Flug Revue Nr. 9/September 1987.
- Air Force to develop advanced ejection seat for the 1990s. In: Flying Safety Magazine. Oktober 1984, S. 22–23 (af.mil [PDF]).
- Kevin Coyne: Fascinating facts. In: The ejection site. Abgerufen am 25. Juli 2021 (englisch).
- Alan Dawes, Ron Kraan: Ejection at Mach 2.6. In: Flightgear online. Abgerufen am 21. Juli 2021 (englisch).
- Aviation Week & Space Technology, 8. August 2005, S. 60–62.
- Harrier losses & ejections. Abgerufen am 25. Juli 2021 (englisch).
- Ludwig Bölkow: Ein Jahrhundert Flugzeuge: Geschichte und Technik des Fliegens. Springer, Berlin / Heidelberg / New York 1990, S. 236.
- R. Morton: Powered aircraft ejection seat. 22. November 1971, abgerufen am 25. Juli 2021 (englisch).
- Tony Wesolowsky: Flight of the Condordski. Radio Free Europe / Radio Liberty, 31. Dezember 2018, abgerufen am 25. Juli 2021 (englisch).