Satz von Parseval

Der Satz von Parseval ist eine Aussage aus der Funktionalanalysis aus dem Bereich der Fourier-Analysis. Er besagt, dass die -Norm einer Fourier-Reihe mit der -Norm ihrer Fourier-Koeffizienten übereinstimmt. Die Aussage entstand 1799 aus einem Satz über mathematische Reihen von Marc-Antoine Parseval, der später auf die Fourier-Reihen ausgedehnt wurde. Parseval, der sich eigentlich nur auf reell-wertige Funktionen konzentrierte, veröffentlichte seinen Satz ohne Beweis, da er seine Richtigkeit für augenscheinlich hielt. Eine ähnliche Aussage für die Fourier-Transformation macht der Satz von Plancherel. Bei beiden Sätzen handelt es sich um Energieerhaltungssätze, d. h. die Signalenergie ist im Funktionenraum und im Transformationsbereich gleich. Der Satz von Plancherel ist eine Verallgemeinerung von der diskreten Fourierzerlegung hin zur kontinuierlichen. Beide lassen sich elegant in eine Hilbertraumdarstellung überführen, womit dann einfach folgt, dass die Fourierbasen als Kerne der Transformation sog. "tight frames" (ein spezielles, energieerhaltendes Erzeugendensystem) dieser Räume sind. Die Zusammenstellung dieses wesentlich allgemeineren Konzepts baut u. a. auf diesem Satz und dessen Verallgemeinerungen auf, erfolgte aber erst über hundert Jahre später basierend auf Arbeiten von Erhard Schmidt, David Hilbert und Herrmann Weyl.

Aussagen des Parsevalschen Theorems

Seien und zwei Riemann-integrierbare komplexwertige Funktionen über mit Periode und der Fourier-Reihen-Zerlegung

und .

Dann gilt

wobei die Imaginäre Einheit ist und die komplexe Konjugation bezeichnet.

Es gibt viele verschiedene Spezialfälle des Theorems. Ist z. B. , erhält man

woraus d​ie Unitarität d​er Fourierreihen folgt.

Außerdem sind oft nur die Fourierreihen für reell-wertige Funktionen und gemeint, was folgendem Spezialfall entspricht:

reell, ,
reell, .

In diesem Fall ist

wobei den Realteil bezeichnet.

Anwendungen

In d​er Physik u​nd den Ingenieurwissenschaften w​ird mit d​em Parsevalschen Theorem ausgedrückt, d​ass die Energie e​ines Signals i​m Zeitbereich gleich seiner Energie i​m Frequenzbereich ist. Dies w​ird in folgender Gleichung ausgedrückt:

wobei die Fourier-Transformation von mit weggelassenem Vorfaktor ist und die Frequenz des Signals bezeichnet.

Für zeitdiskrete Signale w​ird die Gleichung zu

wobei die diskrete Fourier-Transformation (DFT) von ist, beide mit Intervalllänge .

Siehe auch

Referenzen

  • Parseval, MacTutor History of Mathematics archive.
  • George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists (Harcourt: San Diego, 2001).
  • Hubert Kennedy, Eight Mathematical Biographies (Peremptory Publications: San Francisco, 2002).
  • Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time Signal Processing 2nd Edition (Prentice Hall: Upper Saddle River, NJ, 1999) p 60.
  • William McC. Siebert, Circuits, Signals, and Systems (MIT Press: Cambridge, MA, 1986), pp. 410–411.
  • David W. Kammler, A First Course in Fourier Analysis (Prentice-Hall, Inc., Upper Saddle River, NJ, 2000) p. 74.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.