Satz von Morita
Der Satz von Morita ist ein Lehrsatz des mathematischen Teilgebiets der Topologie. Der Satz geht zurück auf eine wissenschaftliche Arbeit des japanischen Mathematikers Kiiti Morita aus dem Jahre 1948 und behandelt das Problem, unter welchen Bedingungen ein topologischer Raum die Eigenschaft der Parakompaktheit besitzt. Er ist verwandt mit dem Satz über Metrisierbarkeit und Parakompaktheit des britischen Mathematikers Arthur Harold Stone.[1]
Formulierung des Satzes
Der Satz lässt sich formulieren wie folgt:[2][3]
- Unter der allgemeinen Annahme des abzählbaren Auswahlaxioms gilt:
- Jeder reguläre Lindelöf-Raum ist parakompakt.
- Dabei gilt im Einzelnen:
- Ist ein regulärer Lindelöf-Raum und eine beliebige offene Überdeckung von , so lässt sich durch eine Mengenfolge offener -Teilmengen so überdecken, dass eine lokal-endliche Verfeinerung von bildet.
Eine etwas andere, jedoch eng verwandte Formulierung des Satzes findet man in der Monographie Topology von James Dugundji. Sie besagt:[4]
- In einem hausdorffschen Lindelöf-Raum sind Regularität und Parakompaktheit gleichwertige Konzepte.
Folgerungen
Aus dem moritaschen Satz lassen sich folgende Korollare ziehen:[5]
- Korollar 1 (Satz von Stone für separable Räume):
- In einem separablen metrischen Raum besitzt jede offene Überdeckung eine lokal-endliche abzählbare Verfeinerung .
- Korollar 2:
- Ein hausdorffscher regulärer Lindelöf-Raum ist stets ein T4-Raum. Dies gilt insbesondere für jeden regulären Hausdorff-Raum, der das zweite Abzählbarkeitsaxiom erfüllt.
Literatur
- James Dugundji: Topology. 8th printing. Allyn and Bacon, Boston MA 1973.
- Ernest Michael: A note on paracompact spaces. In: Proceedings of the American Mathematical Society. Band 4, Nr. 5, 1953, S. 831–838, JSTOR:2032419.
- Kiiti Morita: Star-finite coverings and the star-finite property. In: Mathematica Japonica. Band 1, 1948, S. 60–68.
- Jun-iti Nagata: Modern General Topology (= North Holland Mathematical Library. Band 33). 2., überarbeitete Auflage. North-Holland Publishing, Amsterdam / New York / Oxford 1985, ISBN 0-444-87655-3 (MR0831659).
- Martin Väth: Topological Analysis. From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions (= De Gruyter Series in Nonlinear Analysis and Applications. Band 16). Walter de Gruyter, Berlin / Boston 2012, ISBN 978-3-11-027722-7 (MR2961860).
- Stephen Willard: General Topology (= Addison-Wesley Series in Mathematics). Addison-Wesley, Reading MA u. a. 1970, ISBN 0-201-08707-3 (MR0264581).
Einzelnachweise
- Martin Väth: Topological Analysis. 2012, S. 96 ff.
- Martin Väth: Topological Analysis. 2012, S. 96.
- Stephen Willard: General Topology. 1970, S. 146
- James Dugundji: Topology. 1973, S. 174–175
- Martin Väth: Topological Analysis. 2012, S. 97–98.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.