Nicht-fortsetzbare Lösung

In d​er Theorie d​er gewöhnlichen Differentialgleichungen erhält m​an aus d​em Satz v​on Peano u​nd dem Satz v​on Picard-Lindelöf d​ie Existenz e​iner lokalen Lösung e​ines gegebenen Anfangswertproblems. Man i​st vor a​llem daran interessiert, o​b man d​iese Lösung immer weiter fortsetzen kann, b​is man z​u einer nicht-fortsetzbaren Lösung (gelegentlich a​uch maximale Lösung genannt) gelangt. In e​inem zweiten Schritt i​st man a​n dem Grund für d​ie Nicht-Fortsetzbarkeit interessiert. Dies w​ird durch d​en Satz v​om maximalen Existenzintervall geklärt.

Typischerweise werden d​ie Ergebnisse i​n folgender Reihenfolge angewandt:

  • Zunächst zeigt man mit dem Satz von Peano oder dem Satz von Picard-Lindelöf die Existenz einer (ggf. eindeutigen) lokalen Lösung des Anfangswertproblems.
  • Daraus folgt mit dem unten angegebenen Satz die Existenz einer nicht-fortsetzbaren Lösung des Anfangswertproblems. Deren Eindeutigkeit bekommt man als Anwendung der gronwallschen Ungleichung.
  • Mit Hilfe des Satzes vom maximalen Existenzintervall kann man durch Ausschluss der übrigen Alternativen (beispielsweise mit Vergleichsargumenten) folgern, dass diese nicht-fortsetzbare Lösung global ist.

Im Folgenden sei stets .

Existenz einer nicht-fortsetzbaren Lösung

Sei und stetig. Weiter sei eine Lösung von

auf . Dann gibt es ein und eine Lösung obiger Differentialgleichung auf mit den Eigenschaften:

  • auf .
  • Es gibt kein , so dass zu einer Lösung auf fortgesetzt werden kann.

Dieser Satz wird bewiesen, indem man eine partielle Ordnung auf der Menge aller Lösungen derart einführt, dass maximale Elemente stets nicht-fortsetzbare Lösungen sind. Deren Existenz wird mit dem Lemma von Kuratowski-Zorn bewiesen. Details sind im Beweisarchiv zu finden. Auf Grund dieses Beweises wird die nicht-fortsetzbare Lösung gelegentlich auch als maximale Lösung bezeichnet. Man verwechsle dies aber nicht mit dem Begriff der maximalen Lösung eines nicht-eindeutig lösbaren Anfangswertproblems (für stetiges ).

Der Satz vom maximalen Existenzintervall

Hat m​an eine nicht-fortsetzbare Lösung vorliegen, möchte m​an wissen, w​as am Rand i​hres Definitionsbereichs passiert. Das Ausschließen dieses Phänomens würde d​ann nämlich Globalität dieser Lösung n​ach sich ziehen.

Formulierung

Sei und stetig; dabei sei explizit zugelassen. Betrachte die Differentialgleichung

Dann gilt für jede nicht-fortsetzbare Lösung

  • (Globalität) oder

Hierin sei vereinbart.

Variante für lokal Lipschitz-stetige Differentialgleichung

Seien , stetig sowie lokal Lipschitz-stetig in der zweiten Variablen und eine nicht-fortsetzbare Lösung von . Dann gilt

  • (Globalität) oder
  • oder
  • es gibt eine Folge , so dass der Grenzwert existiert mit .

Literatur

  • Herbert Amann: Gewöhnliche Differentialgleichungen. 2. Auflage. Gruyter – de Gruyter Lehrbücher, Berlin / New York 1995, ISBN 3-11-014582-0.
  • Wolfgang Walter: Gewöhnliche Differentialgleichungen. 6. Auflage. Springer-Verlag, Berlin / Heidelberg / New York 1996, ISBN 3-540-59038-2.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.