Kreuzkorrelation

In der Signalanalyse wird die Kreuzkorrelationsfunktion zur Beschreibung der Korrelation zweier Signale und bei unterschiedlichen Zeitverschiebungen zwischen den beiden Signalen eingesetzt. Kreuz steht hierbei für den Fall der Funktion:

Handelt es sich um einen schwach stationären Prozess, so ist die Korrelationsfunktion nicht mehr von der Wahl der Zeitpunkte und , sondern nur von deren Differenz abhängig.

Die Kreuzkorrelations-Operation ist identisch mit der komplex konjugierten Faltung (s. en:Cross-correlation#Properties). Insbesondere im Fachgebiet Maschinelles Lernen, wo man mit Convolutional Neural Networks arbeitet, wird aufgrund dieser Identität meistens die Kreuzkorrelation verwendet, diese aber als Faltung bezeichnet, weil sie leichter zu implementieren ist.[1][2]

Definition

Es g​ilt für Energiesignale:

und für Leistungssignale:

mit als der konjugiert komplexen Funktion von , dem Operatorsymbol als Kurzschreibweise der Kreuzkorrelation und als dem der Faltungsoperation.

Analog wird die diskrete Kreuzkorrelation, diese spielt im Bereich der diskreten Signalverarbeitung eine wesentliche Rolle, mit der Folge und einer Verschiebung festgelegt als:

= (Energiesignale)
= (Leistungssignale)

In d​er digitalen Signalverarbeitung wiederum i​st eine endliche Mittelung m​it Argumenten beginnend b​ei Index 0 a​uf Grund d​er Architektur v​on Rechnerregistern erforderlich, w​ovon es e​ine vor- u​nd eine unvorgespannte Version gibt:

(Vorspannversion)
(unvorgespannte Version)

Die Kreuzkorrelation i​st mit d​er Kreuzkovarianz e​ng verwandt.

Eigenschaften

Zusammenhang zwischen Faltung, Kreuzkorrelation und Autokorrelation.

Für alle gilt

sowie

und

mit den Autokorrelationsfunktionen und .

Sie zeigt z. B. Spitzen bei Zeitverschiebungen, die der Signallaufzeit vom Messort des Signals zum Messort des Signals entsprechen. Auch Laufzeitunterschiede von einer Signalquelle zu beiden Messorten können auf diese Weise festgestellt werden. Die Kreuzkorrelationsfunktion eignet sich daher besonders zur Ermittlung von Übertragungswegen und zur Ortung von Quellen.

Rechentechnisch wird die Kreuzkorrelationsfunktion in der Regel über die inverse Fouriertransformation des Kreuzleistungsspektrums ermittelt:

Verbindung mit der Kreuzkovarianz

Ist eines der Signale oder nullsymmetrisch, d. h. ihr Mittelwert über das Signal ist Null oder , ist die Kreuzkorrelation identisch mit der Kreuzkovarianz. Bekannte Vertreter der nullsymmetrischen Funktionen sind zum Beispiel die Sinus- und Kosinusfunktionen.

Literatur

  • Bernd Girod, Rudolf Rabenstein, Alexander Stenger: Einführung in die Systemtheorie. 4. Auflage. Teubner, Wiesbaden 2007, ISBN 978-3-8351-0176-0.
  • Rüdiger Hoffmann: Signalanalyse und -erkennung. Springer, ISBN 3-540-63443-6.

Siehe auch

Einzelnachweise

  1. Ian Goodfellow, Yoshua Bengio und Aaron Courville: Deep Learning. Hrsg.: MIT Press. S. 328 - 329 (deeplearningbook.org).
  2. Conv2d. In: Dokumentation PyTorch. Abgerufen am 5. Februar 2021.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.