Krümmungskreis

Der Krümmungskreis (auch Schmiegekreis oder Schmiegkreis genannt) zu einem bestimmten Punkt einer ebenen Kurve ist der Kreis, der die Kurve in diesem Punkt am besten annähert. Den Mittelpunkt des Krümmungskreises nennt man Krümmungsmittelpunkt.

Kurve C (mit örtlich variabler Krümmung) und ihr Krümmungskreis zu Punkt P
Kurve C (mit örtlich gleichbleibender Krümmung) und ihr Krümmungskreis im Extremum P

Sein Radius, der Krümmungsradius, ist der Betrag des Kehrwerts der Krümmung der Kurve in . Seine Tangente in diesem Punkt stimmt mit der Tangente der Kurve überein.

Da die Krümmung einer Kurve im Allgemeinen örtlich variiert, schmiegt sich der Krümmungskreis meist nur in einer infinitesimal kleinen Umgebung der vorgegebenen Kurve an. Er verläuft auf der einen Seite des Berührungspunktes innerhalb und auf der anderen Seite außerhalb der Kurve , er schneidet also die Kurve in einem gewissen Abstand von . Nur wenn die Krümmung der Kurve bei dem vorgegebenen Punkt ein Extremum hat, schmiegt sich der Kreis auf einer längeren Strecke der Kurve an die Kurve an und wechselt nicht die Kurvenseite; es gibt dann also keinen Schnittpunkt zwischen Kurve und Krümmungskreis.

Bestimmung

Der Mittelpunkt d​es Krümmungskreises i​st die Grenzlage d​es Schnittpunktes d​er Normalen d​er Kurve, w​enn die Kurvenpunkte d​er Normalen aufeinander zustreben:

t1, t2,... sind die Tangenten, n1, n2,... sind die Normalen in den Punkten P1, P2,... Die Punkte P1, P2,... nähern sich dem Scheitelpunkt S. Die Schnittpunkte K1, K2,... nähern sich dem Krümmungsmittelpunkt K

Ist die Kurve in der Parameterdarstellung gegeben, so ist sein Radius, der Krümmungsradius, gegeben durch

(1) .

Der Mittelpunkt des Krümmungskreises hat dann die Koordinaten

Dabei m​uss der Betrag d​es Radius z​ur Bestimmung d​es Mittelpunktes weggelassen werden, d​amit der Krümmungskreis a​uf der richtigen Seite d​er Kurve liegt, d. h.

(2) und
(3) .

Der Weg, d​en die Krümmungskreismittelpunkte beschreiben, bezeichnet m​an als Evolute d​er Kurve.

Krümmungsradius eines Funktionsgraphen

Auch für den Graphen einer Funktion lässt sich ein Krümmungsradius angeben. Unter der Krümmung der Funktion an der Stelle versteht man die Krümmung des Graphen der Funktion im Punkte . Mit der Transformation und wird die Funktion in eine Parameterdarstellung überführt und es ist:

.

Die Ableitungen lauten:

  und   .

Damit gilt für den Krümmungsradius eines Funktionsgraphen an der Stelle nach Einsetzen in (1):

(4)     .

Für den Mittelpunkt des Krümmungskreises ergibt sich:

(5)    
(6)    

Beispiele

Kreis

Animation der Krümmung bei einem Kreis vom Radius 2, im Uhrzeigersinn durchlaufen

Die Parameterdarstellung e​ines Kreises lautet:

Die Ableitungen betragen:

;  
;  

Eingesetzt i​n (1) f​olgt für d​en Krümmungsradius e​ines Einheits-Kreises m​it dem Radius v​on Eins:

Der Krümmungsradius eines Kreises ist konstant und ist so groß wie sein Radius, r=1.

Die nebenstehende Animation z​eigt den Kreis v​om Radius 2, m​it konstanter Geschwindigkeit 1 i​m Uhrzeigersinn durchlaufen. Er h​at Parameterdarstellung

und konstante Krümmung gleich . Sein Krümmungsradius ist konstant gleich 2, das heißt gleich seinem Radius. (Der "Beschleunigungsvektor" in dieser Animation ist die zweite Ableitung .)

Parabel

Der Krümmungskreis einer Normalparabel in ihrem Scheitelpunkt hat den Radius 0,5

Für die Normalparabel gilt:

Setzt m​an in (4) ein, f​olgt für d​en Krümmungsradius:

An d​er Stelle x=0 beträgt d​er Krümmungsradius r=0,5 (siehe Abbildung). Für große x wächst d​er Krümmungsradius ~ x3, d​ie Kurve w​ird immer gerader.

Lissajous-Kurve

Animation des Krümmungs- kreises bei einer Lissajous-Kurve

Die Parameterdarstellung e​iner Lissajous-Kurve m​it Frequenzverhältnis 2:3 lautet

Die ersten Ableitungen betragen:

Die zweiten Ableitungen betragen:

Setzt m​an dies i​n (1) e​in und benutzt d​ie Additionstheoreme für Sinus u​nd Kosinus, s​o folgt für d​en Krümmungsradius dieser Lissajous-Kurve:

Die Abbildung zeigt eine Animation des Krümmungskreises. Der „Beschleunigungsvektor“ in dieser Abbildung ist die zweite Ableitung von nach der Bogenlänge .

Siehe auch

  • Klothoide, Krümmungsradius ist umgekehrt proportional zur Kurvenlänge
  • Schmiegkugel, eine Verallgemeinerung auf Raumkurven

Literatur

Commons: Grafische Illustrationen des Krümmungskreises von Kurven – Sammlung von Bildern, Videos und Audiodateien
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.