Interpolationssuche
Die Interpolationssuche, auch Intervallsuche genannt, ist ein von der binären Suche abgeleitetes Suchverfahren, das auf Listen und Feldern zum Einsatz kommt.
Während der Algorithmus der binären Suche stets das mittlere Element des Suchraums überprüft, versucht der Algorithmus der Interpolationssuche im Suchraum einen günstigeren Teilungspunkt als die Mitte zu erraten. Die Arbeitsweise ist mit der eines Menschen vergleichbar, der ein Wort in einem Wörterbuch sucht: Die Suche nach Zylinder wird üblicherweise am Ende des Wörterbuches begonnen, während die Suche nach Aal im vorderen Bereich begonnen werden dürfte.
Der Algorithmus
Die Interpolationssuche geht von sortierten Daten aus. Sie eignet sich am besten für gleichverteilte Daten. Des Weiteren wird ein wahlfreier Zugriff auf die Elemente vorausgesetzt. Die Daten werden bei der Interpolationssuche in Abhängigkeit vom Schlüssel geteilt. Hat dieser einen großen Wert, befindet sich das gesuchte Element aufgrund der Vorsortierung im hinteren Teil der Daten. Dementsprechend wird auch im hinteren Teil der Daten die Teilung vorgenommen. Bei einem kleinen Schlüssel wird das Feld entsprechend im vorderen Teil gespalten.
Für alle Daten lässt sich die Teilungsposition berechnen, indem zunächst die Anzahl aller Elemente durch die Anzahl verschiedener Elemente dividiert wird, und anschließend mit dem gesuchten Schlüssel multipliziert wird:
Die Position des gesuchten Elementes wird somit interpoliert, indem die Gleichverteilung der Daten für eine Abbildung des Schlüssels auf die Liste bzw. das Feld genutzt wird.
Nun kann überprüft werden, ob der Schlüssel des teilenden Elementes einen größeren oder kleineren Wert als der Schlüssel des gesuchten Elementes hat. Bei identischen Schlüsseln ist die Suche bereits beendet. Wenn das teilende Element einen kleineren Wert hat, wird der rechte Teilbereich weiteruntersucht, andernfalls der linke Teilbereich. Die Zahl der Elemente sowie die Zahl der verschiedenen Schlüssel wird für den neuen Bereich ermittelt, und anschließend eine neue Teilungsposition interpoliert.
Beispiel
Ein kurzes praktisches Beispiel soll die Arbeitsweise der Interpolationssuche veranschaulichen. Dazu wird der Wert 7 in den folgenden Elementen gesucht:
2 | 4 | 7 | 9 | 12 | 21 | 26 | 31 | 37 |
Anfangs wird die linke (l) und rechte (r) Grenze auf die Grenzen des Arrays gesetzt. Dann wird das Teilungselement mit Hilfe der folgenden Formel berechnet:
Das gibt also für das Array (rot = Suchbereich, blau = x, fett = gesucht):
2 | 4 | 7 | 9 | 12 | 21 | 26 | 31 | 37 |
Daraufhin wird geschaut, ob das gefundene Element das gesuchte ist. Ist dies der Fall, kann abgebrochen werden, andernfalls wird der Suchbereich eingeschränkt. Wenn das x zu klein gewählt ist – man also rechts suchen muss – wird die linke Grenze auf x + 1 gesetzt und darin gesucht. Ansonsten wird – man muss also links suchen (beziehungsweise das x ist zu groß) – die rechte Grenze auf x−1 gesetzt und jetzt im linken Bereich gesucht.
Da der Wert A[1] = 4 kleiner als das gesuchte Element ist, wird die linke Grenze auf l = x + 1 = 2 gesetzt. Die rechte Grenze bleibt und es ergibt sich folgende Formel:
Das Array sieht nun so aus:
2 | 4 | 7 | 9 | 12 | 21 | 26 | 31 | 37 |
Da nun A[x] = A[2] = 7 = v ist, also das Element gefunden wurde, kann abgebrochen werden und x als Lösung nach zwei Schritten zurückgegeben werden.
Komplexität
Eine Untersuchung der Interpolationssuche erweist sich als sehr komplex, als Laufzeit kann jedoch (n ist die Anzahl der Elemente) im durchschnittlichen Fall angenommen werden. Im ungünstigsten Fall (die interpolierte erwartete Position ist immer am Rand) beträgt die Laufzeit allerdings .[1] Diese Beeinträchtigung löst die Quadratische Binärsuche.
Beispielimplementierungen
VB.NET 2008
'Statt einer List(Of Integer) könnte auch IEnumerable(Of Integer), etc. verwendet werden. IEnumerable ermöglicht die Übergabe
'sowohl von generischen Listen, als auch Arrays
Public Function InterpolatedSearch(ByVal key As Integer, ByVal array As List(Of Integer)) As Integer
Dim left As Integer = 0
Dim right As Integer = array.Count - 1
Dim diffElem, pos As Integer
Do While (key >= array(left)) AndAlso (key <= array(right))
diffElem = array(right) - array(left)
pos = left + Math.Floor((right - left) * (key - array(left)) / diffElem)
If key > array(pos) Then
left = pos + 1
ElseIf key < array(pos)
right = pos - 1
Else
Return pos
End If
Loop
Return -1
End Function
Java
public int interpolierteSuche(int schluessel, int daten[]) {
int links = 0; // linke Teilfeldbegrenzung
int rechts = daten.length - 1; // rechte Teilfeldbegrenzung
int versch; // Anzahl verschiedener Elemente
int pos; // aktuelle Teilungsposition
// solange der Schlüssel im Bereich liegt (andernfalls ist das gesuchte
// Element nicht vorhanden)
while( schluessel >= daten[links] && schluessel <= daten[rechts] ){
// Aktualisierung der Anzahl der verschiedenen Elemente
versch = daten[rechts] - daten[links];
// Berechnung der neuen interpolierten Teilungsposition
pos = links + (int)(((double)rechts - links) * (schluessel - daten[links])
/ versch);
if( schluessel > daten[pos] ) // rechtes Teilintervall
links = pos + 1; // daten[pos] bereits überprüft
else if( schluessel < daten[pos] ) // linkes Teilintervall
rechts = pos - 1; // daten[pos] bereits überprüft
else // Element gefunden
return pos; // Position zurückgeben
}
return -1; // Element nicht gefunden
}
Delphi
type
TIntArray = array of integer;
function interpolierteSuche(schluessel: integer; var daten: TIntArray): integer;
var
links, rechts,
versch, aPos: integer;
begin
links := 0;
rechts := high(daten);
versch := 0;
aPos := 0;
while (schluessel >= daten[links]) and (schluessel <= daten[rechts]) do
begin
versch := daten[rechts] - daten[links];
aPos := links + round((rechts - links) * (schluessel - daten[links]) / versch);
if (schluessel > daten[aPos]) then
links := aPos + 1 else
if (schluessel < daten[aPos]) then
rechts := aPos - 1 else
begin
result := aPos;
exit;
end;
end;
result := - 1;
end;
C
/**
* Liefert 1 zurück, wenn X in M gefunden wurde, ansonsten 0.
* Beim Aufruf wird als 4. Argument eine Variable per Adresse
* übergeben, in die bei Erfolg die Position von X in M geschrieben wird.
* @param const int[] M Feld, in dem gesucht werden soll
* @param int n Groesse des Feldes
* @param int X der gesuchte Eintrag
* @param int * index Position des gesuchten Eintrags X in M
* @return int 1=gefunden, 0=nicht gefunden
*/
int interpolation_search( const int M[], int n, int X, int *index )
{
double dx, dy;
double m; // Steigung
double b; // Y-Achsenabschnitt
int links = 0; // x1
int rechts = n-1; // x2
int pos; // vermutete Position
if ( M==NULL || X < M[0] || X > M[n-1] )
{
return 0;
}
while ( links <= rechts )
{
dx = rechts - links;
if ( dx == 1 )
{
if ( M[rechts] == X )
{
*index = rechts;
return 1;
}
else if ( M[links] == X )
{
*index = links;
return 1;
}
return 0;
}
if ( dx == 0 ) // 0 Division vorbeugen
{
return 0;
}
dy = M[rechts] - M[links];
if ( dy == 0 ) // keine Steigung
{
if ( M[links] == X )
{
*index = links;
return 1;
}
else
{
return 0;
}
}
m = dy / dx; // Steigung
b = (X - M[links]) / m;
pos = links + b; // Vermutete Position berechnen
if ( M[pos] == X )
{
*index = pos;
return 1;
}
else if ( M[pos] > X )
{
rechts = pos - 1;
}
else
{
links = pos + 1;
}
}
return 0;
}
Literatur
- Robert Sedgewick: Algorithmen in C. Addison-Wesley, Bonn 1992, ISBN 3-89319-376-6, S. 239–241.
Einzelnachweise
- Prof. Dr. Thomas Seidl, Dr. Marcus Gossler: Algorithmen und Datenstrukturen - Kapitel 4: Suchen. Hrsg.: Ludwig-Maximilians-Universität München - Lehrstuhl für Datenbanksysteme und Datamining. (lmu.de [PDF]).