Fixpunktsatz von Banach
Der Fixpunktsatz von Banach, auch als Banachscher Fixpunktsatz bezeichnet, ist ein mathematischer Satz aus der Funktionalanalysis, einem Teilgebiet der Mathematik. Er gehört zu den Fixpunktsätzen und liefert neben der Existenz und der Eindeutigkeit eines Fixpunktes auch die Konvergenz der Fixpunktiteration. Somit ist die Aussage konstruktiv. Es wird also ein Verfahren zur Bestimmung des Fixpunktes sowie eine Fehlerabschätzung für ebendieses angegeben.
Mit dem Fixpunktsatz von Banach lässt sich beispielsweise die Konvergenz von iterativen Verfahren wie dem Newton-Verfahren zeigen und der Satz von Picard-Lindelöf beweisen, der Grundlage der Existenztheorie gewöhnlicher Differentialgleichungen ist.
Der Satz ist nach Stefan Banach benannt, der ihn 1922 zeigte.[1]
Eine Veranschaulichung des Satzes liefert eine Landkarte, auf der die Umgebung, in der man sich befindet, abgebildet ist. Sieht man diese Karte als Kontraktion der Umgebung, so findet man genau einen Punkt auf der Karte, der mit dem direkt darunter liegenden Punkt in der realen Welt übereinstimmt.
Aussage
Gegeben seien ein vollständiger metrischer Raum , beispielsweise ein Banach-Raum mit der Metrik , und eine nichtleere, abgeschlossene Menge . Sei
eine Kontraktion mit Kontraktionszahl . Das bedeutet, es gilt
- für alle .
Außerdem sei die Folge iterativ definiert durch
für einen beliebigen Startwert aus .
Unter den obigen Voraussetzungen gilt:
- Es existiert genau ein , so dass
- ist. Für alle gilt außerdem
Die Abbildung besitzt also einen eindeutig bestimmten Fixpunkt und dieser stimmt für alle Startwerte der oben angegebenen Iterationsvorschrift mit dem Grenzwert der Iteration überein.
Fehlerabschätzung der Fixpunktiteration
Für die Iterationsvorschrift
gelten folgende Fehlerabschätzungen:
- A-priori-Fehlerabschätzung: Es ist
- A-posteriori-Fehlerabschätzung: Es ist
Außerdem gilt die Abschätzung
- ,
die Konvergenzgeschwindigkeit ist also linear.
Bemerkung
In der Literatur finden sich teils von der oben angegebenen Aussage abweichende Formulierungen. Mögliche Unterschiede sind:
- Die Eigenschaft der Abbildung , eine Kontraktion zu sein, wird stattdessen über die Lipschitz-Stetigkeit formuliert. Dann muss auf Lipschitz-stetig sein mit einer Lipschitz-Konstante .
- Der zugrunde liegende Raum ist ein anderer. So wird der Satz teils auf Banachräumen (das heißt auf vollständigen normierten Räumen) formuliert oder auf . Die Aussage wie auch der Beweis bleiben identisch, es ist dann lediglich im Falle eines normierten Raumes beziehungsweise im reellen Fall zu setzen.
Beweisskizze
Der Beweis der Aussage basiert darauf, zu zeigen, dass die Folge eine Cauchy-Folge ist, die dann aufgrund der Vollständigkeit des zugrundeliegenden Raumes konvergiert.
Zuerst gilt aufgrund der Kontraktivität
Durch wiederholtes Anwenden dieser Abschätzung erhält man
- (1)
Des Weiteren folgt durch wiederholtes Abschätzen mit der Dreiecksungleichung
- (2)
Schätzt man die einzelnen Summenglieder der rechten Seite von (2) durch (1) ab, so erhält man
Die letzte Abschätzung folgt hier mithilfe der geometrischen Reihe, da . Aus der Abschätzung folgt direkt, dass eine Cauchy-Folge ist. Aufgrund der Vollständigkeit existiert dann der Grenzwert
der Folge. Da eine Abbildung von in sich selbst ist, und abgeschlossen ist, ist in der Menge enthalten.
Da stetig ist (da kontraktiv), folgt
- ,
der Grenzwert ist also Fixpunkt.
Angenommen, es existieren zwei Fixpunkte . Dann ist
- und .
Aus der Kontraktivität folgt dann
- .
Da aber ist, muss sein. Daher ist .
Anwendungen
Dieser Satz wird in vielen konstruktiven Sätzen der Analysis benutzt, die wichtigsten sind:
- das inverse- und implizite-Funktionen-Theorem
- der Existenz- und Eindeutigkeitssatz von Picard-Lindelöf für gewöhnliche Differentialgleichungen
In der numerischen Mathematik spielt die Fixpunktiteration eine wichtige Rolle. Beispiele hierfür sind die Konvergenztheorien numerischer Verfahren, wie das Newton-Verfahren oder das Splitting-Verfahren.
Umkehrung
Die folgende auch als Satz von Bessaga bekannte Aussage stellt eine Umkehrung des Fixpunktsatzes dar:
- Ist eine Funktion auf einer nichtleeren Menge, so dass und alle Iterierten genau einen Fixpunkt haben, so gibt es zu jedem eine vollständige Metrik auf , so dass bzgl. eine Kontraktion mit der Kontraktionskonstanten ist.[2]
Literatur
- Hans-Rudolf Schwarz, Norbert Köckler: Numerische Mathematik. 5., überarbeitete Auflage. Teubner, Stuttgart u. a. 2004, ISBN 3-519-42960-8.
- Otto Forster: Analysis 2. Differentialrechnung im , gewöhnliche Differentialgleichungen. 10., verbesserte Auflage. Springer Spektrum, Wiesbaden 2013, ISBN 978-3-658-02356-0, doi:10.1007/978-3-658-02357-7.
- Dirk Werner: Funktionalanalysis. 7., korrigierte und erweiterte Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21016-7, doi:10.1007/978-3-642-21017-4.
Einzelnachweise
- Werner: Funktionalanalysis. 2011, S. 197.
- William A. Kirk, Brailey Sims (Hrsg.): Handbook of Metric Fixed Point Theory. Kluwer, Dordrecht u. a. 2001, ISBN 0-7923-7073-2, Theorem 8.1.