Einparameter-Untergruppe

In d​er Theorie topologischer Gruppen i​st eine Einparameter-Untergruppe e​in stetiger Gruppenhomomorphismus a​us der additiven Gruppe d​er reellen Zahlen i​n eine topologische Gruppe. Das Bild e​iner Einparameter-Untergruppe i​st eine Untergruppe i​m gruppentheoretischen Sinne.

Einparameter-Untergruppen von Lie-Gruppen

Sei eine Lie-Gruppe, dann ist eine Abbildung eine Einparameter-Untergruppe, wenn die Abbildung glatt und ein Gruppenhomomorphismus ist. Für Homomorphismen zwischen Lie-Gruppen ist Glattheit äquivalent zu Stetigkeit. Jede Einparameter-Untergruppe entspricht genau einem Element in der Lie-Algebra von . Je nach Zugang wird die Lie-Algebra manchmal sogar definiert als die Menge der Einparamter-Untergruppen.

Beispiele

  • Die stetigen Gruppenhomomorphismen von der additiven Gruppe der reellen Zahlen in sich selber sind genau die Abbildungen für ein festes .
  • Die stetigen Gruppenhomomorphismen von der additiven Gruppe der reellen Zahlen in die multiplikative Gruppe der von Null verschiedenen reellen Zahlen sind genau die Abbildungen für ein festes .

Literatur

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.