Doppelt-stochastische Matrix

In der Mathematik bezeichnet eine doppelt-stochastische Matrix (manchmal auch doppelt-stochastische Übergangsmatrix) eine quadratische Matrix, deren Zeilen- und Spaltensummen betragen und deren Elemente zwischen und liegen.

Charakterisierungen

Die folgenden Charakterisierungen doppelt-stochastischer Matrizen s​ind äquivalent:

  • Eine Matrix ist doppelt-stochastisch genau dann, wenn Zeilen- und Spaltensummen eins betragen und alle Elemente der Matrix zwischen und liegen.
  • Eine Matrix ist doppelt-stochastisch genau dann, wenn sowohl als auch die transponierte Matrix Übergangsmatrizen sind.
  • Eine Matrix ist doppelt-stochastisch genau dann, wenn Zeilen- und Spaltensummen betragen und alle Elemente der Matrix nicht negativ sind.

Eigenwerte und Eigenvektoren

Wie alle Übergangsmatrizen besitzen auch doppelt-stochastische Matrizen als betragsgrößten Eigenwert den Eigenwert . Da jede doppelt-stochastische Matrix sowohl zeilen- als auch spaltenstochastisch ist, ist der Einsvektor (welcher nur Einsen als Einträge hat) sowohl Links- als auch Rechtseigenvektor jeder doppelt-stochastischen Matrix. Ist nun die Matrix doppelt-stochastisch und noch zusätzlich entweder irreduzibel oder echt positiv (vgl. Satz von Perron-Frobenius), so ist die einzige stationäre Verteilung der Markow-Kette, die durch charakterisiert wird, die Gleichverteilung, also der Wahrscheinlichkeitsvektor .

Satz von Birkhoff und von Neumann

Für eine -Matrix gilt, dass sie genau dann doppelt-stochastisch ist, wenn sie eine Konvexkombination von Permutationsmatrizen ist.

Zusatz: Die Permutationsmatrizen s​ind die Extremalpunkte d​er Menge d​er doppelt-stochastischen Matrizen.

Literatur

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.