Aufkreuzungsungleichung

Die Aufkreuzungsungleichung, manchmal a​uch Upcrossing-Ungleichung o​der Überquerungssatz v​on Doob[1] genannt (nach Joseph L. Doob), i​st eine Ungleichung über d​as zeitliche Verhalten v​on Submartingalen i​n diskreter Zeit. Somit i​st die Aussage d​er Theorie d​er stochastischen Prozesse u​nd damit d​er Wahrscheinlichkeitstheorie zuzuordnen. Die Aufkreuzungsungleichung i​st ein wichtiges Hilfsmittel, u​m die Martingalkonvergenzsätze u​nd analoge Aussagen für Rückwärtsmartingale herzuleiten.

Idee

Die grundlegende Idee besteht darin, sich das Submartingal als Aktienkurs vorzustellen. Fällt nun der Kurs unter den Wert , so kauft man Aktien, steigt der Wert über , so verkauft man. Weiß man nun, wie oft das Intervall durchkreuzt wurde (also wie oft das Intervall von unten nach oben durchschritten wurde), so kann man aufgrund der Anzahl der Durchkreuzungen den Gesamtgewinn abschätzen. Genau diese Abschätzung trifft die Aufkreuzungsungleichung.

Formalisierung

Die Formulierung des Unterschreitens von und Überschreitens von funktioniert mittels Stoppzeiten. Man setzt für das Submartingal

als Start,

als Zeitpunkt des k-ten Unterschreitens von und

als Zeitpunkt des k-ten Überschreitens von . Die Anzahl der Durchkreuzungen von bis zum Zeitpunkt ist dann gegeben durch

.

Die Aufkreuzungsungleichung lautet nun

Ableitung von Konvergenzaussagen

Die Ableitung v​on Konvergenzaussagen f​olgt meist d​em Schema, d​ass man

betrachtet. Kann m​an nun u​nter geeigneten Zusatzvoraussetzungen u​nd der Aufkreuzungsungleichung zeigen, dass

gilt und der Prozess nach oben oder unten unbeschränkt ist, so muss sich der Prozess langfristig in dem Intervall befinden, da er weder unendlich oft das Intervall durchkreuzen kann, noch den Bereich des Intervalls verlassen kann. Da dies aber für jedes gilt, lässt sich zeigen, dass der Prozess konvergiert.

Literatur

  • Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-3.
  • Christian Hesse: Angewandte Wahrscheinlichkeitstheorie. 1. Auflage. Vieweg, Wiesbaden 2003, ISBN 3-528-03183-2, doi:10.1007/978-3-663-01244-3.
  • Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-45386-1, doi:10.1007/978-3-642-45387-8.

Einzelnachweise

  1. Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. 2014, S. 269.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.