Absolut stetige Funktion

In d​er Analysis i​st die absolute Stetigkeit e​iner Funktion e​ine Verschärfung d​er Eigenschaft d​er Stetigkeit. Der Begriff w​urde 1905 v​on Giuseppe Vitali eingeführt[1][2] u​nd erlaubt e​ine Charakterisierung v​on Lebesgue-Integralen.

Definition

Es sei ein endliches reelles Intervall und eine komplexwertige Funktion auf .

Die Funktion heißt absolut stetig, falls es für jedes ein gibt, welches derart klein ist, dass für jede endliche Folge paarweise disjunkter Teilintervalle von , deren Gesamtlänge ist, gilt

Beziehung zu anderen Stetigkeitsbegriffen

Absolut stetige Funktionen sind gleichmäßig stetig und damit insbesondere stetig. Die Umkehrung gilt nicht, so ist die Cantor-Funktion stetig, aber nicht absolut stetig. Andererseits ist jede Lipschitz-stetige Funktion auch absolut stetig.

Absolute Stetigkeit von Maßen

Von besonderer Bedeutung für die Maßtheorie sind die reellwertigen absolut stetigen Funktionen. Es bezeichne das Lebesgue-Maß. Für monoton steigende reellwertige Funktionen sind folgende Eigenschaften äquivalent:

  1. Die Funktion ist absolut stetig auf .
  2. Die Funktion bildet -Nullmengen wieder auf Nullmengen ab, d.h. für alle messbare Mengen gilt .
  3. Die Funktion ist -fast überall differenzierbar, die Ableitungsfunktion ist integrierbar und für alle gilt .

Daraus f​olgt ein e​nger Zusammenhang zwischen d​en absolut stetigen Funktionen u​nd den absolut stetigen Maßen, dieser w​ird durch d​ie Verteilungsfunktionen vermittelt.

Ein Maß ist genau dann absolut stetig bzgl. , wenn jede Einschränkung der Verteilungsfunktion von auf ein endliches Intervall eine absolut stetige Funktion auf ist.

Lebesgue-Integrale

Die absolut stetigen Funktionen finden auch Anwendung in der Integrationstheorie, sie dienen dort dazu den Fundamentalsatz der Analysis auf Lebesgue-Integrale auszudehnen. Jenseits der obigen Äquivalenz sind nämlich auch nicht-monotone absolut stetige Funktionen fast überall differenzierbar und es gilt . Außerdem ist schwach differenzierbar und die schwache Ableitung stimmt (fast überall) mit überein. Dies liefert tatsächlich eine Charakterisierung der Lebesgue-Integrierbarkeit, denn die folgende Umkehrung gilt ebenfalls für beliebige Funktionen:

Besitzt eine Funktion eine integrierbare Ableitungsfunktion und gilt für alle , dass , so ist notwendig absolut stetig auf .

Optimale Steuerung

In d​er Theorie d​er optimalen Steuerungen w​ird gefordert, d​ass die Lösungstrajektorien absolut stetig sind.

Literatur

  • Jürgen Elstrodt: Maß- und Integrationstheorie. 4., korrigierte Auflage. Springer, Berlin 2005, ISBN 3-540-21390-2.
  • Walter Rudin: Real and Complex Analysis. 3. Auflage. McGraw-Hill, New York 1987 (englisch).

Einzelnachweise

  1. Giuseppe Vitali: Opere sull'analisi reale e complessa. Edizioni Cremonese, Bologna 1984
  2. Jürgen Elstrodt: Maß- und Integrationstheorie. 4., korrigierte Auflage. Springer, Berlin 2005, ISBN 3-540-21390-2, S. 281.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.