Zitterbewegung
Die Zitterbewegung ist eine theoretische, schnelle Bewegung von Elementarteilchen, speziell von Elektronen, die der (relativistischen) Dirac-Gleichung gehorchen.
Die Existenz einer solchen Bewegung wurde 1928 von Gregory Breit und 1930 von Erwin Schrödinger postuliert, als Ergebnis seiner Analyse von Wellenpaket-Lösungen der Dirac-Gleichung für relativistische Elektronen im Vakuum. In diesem produziert eine Interferenz zwischen dem positiven und dem negativen Energiezustand eine Fluktuation der Position des Elektrons um den Mittelwert mit einer Kreisfrequenz von
mit
- der Elektronenmasse
- der Lichtgeschwindigkeit
- dem reduzierten Planckschen Wirkungsquantum .
Die Zitterbewegung eines freien relativistischen Teilchens wurde nie beobachtet, aber das Verhalten eines solchen Teilchens wurde mit einem eingesperrten Ion simuliert, indem man es in eine Umgebung platzierte, so dass die nicht-relativistische Schrödinger-Gleichung für das Ion dieselbe mathematische Form wie die Dirac-Gleichung hat (obwohl die physikalische Situation anders ist).
Theorie
Aus der zeitabhängigen Schrödingergleichung
wobei der Dirac-Hamiltonoperator für ein Elektron im Vakuum ist
und die Wellenfunktion,
folgt im Heisenberg-Bild, dass jeder Operator Q der folgenden Gleichung gehorcht:
Speziell ist der zeitabhängige Ortsoperator gegeben durch
mit .
Die obige Gleichung zeigt, dass der Operator als k-te Komponente des „Geschwindigkeitsoperators“ interpretiert werden kann.
Die Zeitabhängigkeit des Geschwindigkeitsoperators ist gegeben durch
wobei ist und der Impuls.
Weil sowohl als auch zeitunabhängig sind, kann die obige Gleichung zweimal integriert werden, um die explizite Zeitabhängigkeit des Ortsoperators zu erhalten. Zuerst:
Dann:
Der resultierende Ausdruck besteht aus
- einer Anfangsposition
- einem Bewegungsanteil proportional zur Zeit und
- einem unerwarteten Schwingungsanteil („Zitterbewegung“) mit einer Amplitude, die der Compton-Wellenlänge entspricht.
Interessanterweise verschwindet der Zitterbewegungsterm, wenn man die Erwartungswerte für Wellenpakete nimmt, die vollständig aus Wellen mit positiver Energie (oder vollständig aus Wellen mit negativer Energie) bestehen. Dies kann durch die Foldy-Wouthuysen-Transformation erreicht werden.
Siehe auch
Literatur
- Gregory Breit: An Interpretation of Dirac's Theory of the Electron. In: Proceedings of the National Academy of Sciences. Band 14, Nr. 7, 1928, S. 553–559, doi:10.1073/pnas.14.7.553 (englisch).
- Erwin Schrödinger: Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. In: Sonderausgabe aus den Sitzungsberichten der Preußischen Akademie der Wissenschaften Phys.-Math. Klasse. Band 24, 1930, ZDB-ID 959457-7, S. 418–428.
- Erwin Schrödinger: Zur Quantendynamik des Elektrons. In: Sitzungsberichte der Preußischen Akademie der Wissenschaften. Physikalisch-Mathematische Klasse. 1931, S. 63–72.
- Albert Messiah: Quantum Mechanics. Band 2. North-Holland, Amsterdam 1962, XX.37, S. 950–952 (englisch).
- George Sparling: Zitterbewegung. In: Seminaires & Congrès. Band 4, 2000, ZDB-ID 2045737-6, S. 277–305 (englisch, emis.de [PDF; 337 kB]).
Weblinks
- Tobias Brandes: Vorlesungsskript Quantenmechanik II, TU Berlin, WS 2011/12. (pdf) S. 21–25, abgerufen am 3. September 2018.
- Adrian Wüthrich: Feynman’s Struggle and Dyson’s Surprise: The Development and Early Application of a New Means of Representation. In: Shaul Katzir, Christoph Lehner und Jürgen Renn (Hrsg.): Traditions and Transformations in the History of Quantum Physics. Third International Conference on the History of Quantum Physics, Berlin, June 28 – July 2, 2010. 2013, ISBN 978-3-8442-5134-0, S. 277–279 (englisch, edition-open-access.de – Historische Betrachtung).
- David Hestenes: The zitterbewegung interpretation of quantum mechanics. In: Found Phys. Band 20, 1990, S. 1213, doi:10.1007/BF01889466 (englisch, eine alternative Erklärung über die Interferenz der positiven und negativen Energiezustände hinaus).
- Christoph Wunderlich: Zitternd in der Falle. In: Physik Journal. Band 9, Nr. 3, 2010, S. 20–24 (pro-physik.de [PDF]).
- Rainer Scharf: Atomare Zitterpartie. In: pro-physik.de. 7. Januar 2010, abgerufen am 3. September 2018 (Zusammenfassung zur Simulation von eingesperrten Ionen).